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INTRODUCTION 0 'E

In many practical situations, the experimenter (or the decision-

maker) is faced with the problem of comparing k (> 2) populations,

where each population is characterized by a real-valued parameter e.

In such situations, the classical approach is to test the hypothesis

of homogeneity (equality) among the k parameters. On the other hand,

the real interest (or goal) of the experimenter may be to identify

the best population (defined by the experimenter in terms of, say,

large value of e) or to find a subset which contains the best

population or a subset which contains all populations better than

a control or standard. Thus, the test of homogeneity is inadequate

in several aspects. Mosteller (1948), Paulson (1949), Bahadur

(1950) and Bahadur and Robbins (1950) were among the earliest

research workers to recognize this inadequacy. Since these early

studies, the area of selection and ranking problems has been very

active. It has seen tremendous growth over the last three and a half

decades.

There have been mainly two formulations in selection and

ranking problems, namely, the "indifference zone" approach and the

"subset selection" approach. In the first formulation, due to

Bechhofer (1954 ), the goal is to select one population (or a
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fixed number t, I < t < k) as the best population with a preassigned

minimum probability P*, whenever the unknown parameters lie outside

some subspace of the parameter space, the so-called indifference zone.

Important contributions using this approach have been made by

Bechhofer and Sobel (1954), Bechhofer, Dunnett and Sobel (1954),

Sobel (1967), Mahamunulu (1967), Paulson (1967), Bechhofer, Kiefer

and Sobel (1968), Desu and Sobel (1968, 1971), Dudewicz and Dalal

(1975), Tamhane and Bechhofer (1977, 1979), among others.

In the second formulation, pioneered by Gupta (1956, 1965),

the goal is to select a nonempty nontrivial subset of k populations

so that the best population is included in the selected subset with

a minimum guaranteed probability P*(! < P* < 1) over the whole

*. parameter space. The size of the selected subset is not determined

in advance but is made to depend on the outcome of the experiment.

Some recent contributions in this formulation have been made by Gupta

and Studden (1970), Gupta and Nagel (1971), Gupta and Panchapakesan

(1972), Santner (1975), Gupta and Huang (1975a, 1975b), Gupta and

Huang (1976 ), Bickel and Yahav (1977 ), Gupta and Hsiao (1983),

Gupta and Huang ( 1980), Lorenzen and McDonald (1981). Contribu-

tions to the nonparametric subset selection procedures have been

made by Rizvi and Sobel (1967), Barlow and Gupta (1969 ), Nagel

(1970), Gupta and McDonald (1970), Randles (1970), Ghosh (1973 )

Hsu (1978, 1981), Huang and Panchapakesan (1982).

Recently some contributions to the selection and ranking

procedures based on isotonic estimators have been made by Gupta and

.. .. -- - b .* . *... *.. 0 Uml iii j' " * ' ..-- ' " .. . -" *
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Yang (1984), Gupta and Huang (1983), Gupta and Leu (1983b),

Huang (1984).

There have also been some contributions to the selection and

ranking procedures in two stages. These are relevant when, for

example, the experimenter wants to select a subset of populations

(under investigation) which contains the populations of interest so

that the populations in the selected subset can be examined further.

Some important contributions in this direction have made by Santner

(1976), Mukhopadhyay (1980), Gupta and Kim (1984) under the classi-

;* cal setting, and Miescke (1980, 1983), Gupta and Miescke (1982),

Gupta and Miescke (1984) under the Bayesian setting.

For further developments in both formulations, reference can

be made to Gupta and Panchapakesan (1979) (see also Gibbons, Olkin

and Sobel (1977), Gupta and Huang (1981 ), and Dudewicz and Koo

(982)).

- The main contribution of this thesis is to propose and

study new subset selection procedures for some important and practical

problems for the generalized family of lambda distributions. It should

be pointed out that the family of Tukey's generalized lambda

distributions is very broad and contains most well-known distributions

as special cases.

9 Chapter I deals with selection and ranking procedures based on

sample medians for the symmetric lambda distributions and applications

of the lambda family of distributions. We investigate some properties

of the lambda family of distributions. We also propose some selection

procedures and study the properties of these procedures such as

asymptotic relative efficiencies. An application of the lambda
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distribution for approximating some constants used in the selection

and ranking procedures for other symmietric theoretical distributions

is made. Tables of associated constants for the proposed procedures

are given in this chapter.

Chapter II deals with the problem of isotonic selection

procedures for the family of lambda distributions and for logistic

distributions. We propose and study some isotonic procedures

for syummetric lambda distributions and for logistic distributions. In

particular, we investigate the aporoximations of constants used in

the proposed procedures. It is shown that the isotonic procedure is

better than some classical procedures in terms of reducing the

expected number of bad populations in the selected subset. Tables

of associated constants for the proposed procedures are given in

this chapter.

Chapter III deals with the problem of choosing the optimal

score function for different nonparametric procedures proposed by

Nagel (1970) and Gupta and McDonald ( 1970) The Tukey's lambda

family of distributions is considered as the distribution for the

score function. A Monte Carlo study for the optimal choice of the

score function is carried out. This study indicates that the score

function based on a uniform distribution is optimal and robust against

possible deviations from the underlying distributions. Tables contain-

* ing the values of score functions and the results of the simulations

are given in this chapter.

Chapter IV deals with the problem of an elimination-type two-

stage selection procedure under the Bayesian setting. We propose a

e. W. .. *q,...~~~~~..~ PU.. *~
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two-stage procedure R(c,d) which retains good populations at the

first stage, and selects the best among selected populations. At

Stage 2 we use a stopping rule to construct a 100(1-2o)% Highest

Posterior Density (HPD) credible region with a common width 2d for

the unknown means of selected populations. We study the properties

of the rule R(a,d). Several figures are drawn to examine the

performance of the procedure R(a,d). These figures are based on the

results of a Monte Carlo study.
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CHAPTER I

SELECTION AND RANKING PROCEDURES FOR TUKEY'S

GENERALIZED LAMBDA DISTRIBUTIONS

1.1 Introduction

Tukey's generalized lambda distribution (hereafter called

lambda distribution) was suggested by Tukey (1960 ) as a wide

class of symmetric distributions and is defined in terms of its

inverse cumulative distribution function. It has been generalized

by Ramberg and Schmueiser (1972, 1974 ) so as to include both

symmetric and asymmetric distributions. Originally, Ramberg and

Sctueiser (1972, 1974 ) generalized and used the lambda distribution

for the purpose of generation of continuous unimodal symmetric and

asymmetric random variates since it is well known that the lambda

distribution can be used to approximate many continuous theoretical

distributions and empirical distributions. Therefore, since the

work of Ramberg and Schmeiser (1972, 1974 ) the lambda distribution

has been also used for Monte Carlo studies. Moberg, Ramberg and

Randles (1978) have used the lambda distribution for Monte Carlo

studies to check the robustness of the adaptive M-estimator for the

selection problem under the indifference zone approach formulation.

Also Ramberg, Tadikamalla, Dudewicz and Mykytka (1979) have used the

lambda distribution to fit a distribution to a given set of data.
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They also provided a useful table for various values of parameters-of

the lambda distribution for given combinations of skewness and

* kurtosis. Hogg, Fisher and Randles (1972) have studied the

(empirical) power of the adaptive distribution-free test by using the

lambda distribution for various combinations of skewness and

kurtosis. Filliben (1969) has used the lambda distribution for

estimating the location parameters of symmetric distributions.

Joiner and Rosenblatt (1971) have studied the problem of the distri-

bution of ranges of samples from the lambda distribution. Mykytka

and Ramberg (1979) and Oztiirk and Dale (1985) have studied the

problem of estimating the parameters of the lambda distribution

with a given data set.

If we confine ourselves to the class of unimodal continuous

univariate distributions, skewness and kurtosis can be used as good

measures to characterize a distribution. The lambda distribution is

defined by values of its parameters which are determined by its first

four central moments. The lambda distribution covers both symmwetric

and asyimetric distributions. The family of Burr distributions

(1942, 1973 ) is also a general system of distributions, which is

defined by two constants which determine the corresponding skewness,

kurtosis, mean and variance. The Burr family, however, is much more

difficult to handle than the lambda distribution family because the

values of two constants of the Burr distribution do not provide a

clear interpretation of its skewness and kurtosis. On the other hand,

the lambda distribution is clearly defined by the location, scale and

shape parameters which are directly related to the skewness and
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kurtosis. The Pearson and Johnson systems (see Hahn and Shapiro

(1967)), again, require several different functions to cover the

classes of synmmetric and asymmnetric distributions. On the other hand,

the lambda distribution family is defined by only one function and

still it covers both symmetric and asymmnetric distributions. Thus the

family of lambda distributions is simple, flexible, and easy to use as

well as it is quite broad and general. Hence the use of the lambda

distribution as a model for selection and ranking problems provides

results applicable to several parametric distributions, at least, to

get approximate results. Also by changing the values of the parameters,

we can examine the performance of the selection procedures by taking into

consideration the given data. For example, if based on a given

sample, one believes that the underlying distribution is a heavy-

tail distribution, somewhere between the logistic and double exponen-

tial, then for this case one can assum2 the lambda distribution with

several sets of values of parameters which are determined by the

kurtosis, which, in this case, varies between 4.2 an~d 6.0. Again one

can examine the robustness of any selection procedure due to several

assumptions on the underlying distribution.

Recently several computer package programs in the field of selec-

tion and ranking have been developed by several authors. For example,

the package RS-MCB is developed by Gupta and Hsu (1984a, 1984b) and

Edwards (1984a, 1984b) has developed the package RANKSEL. But these

package programs mainly deal with the normal models. But it is

possible to modify these package programs to cover more models because

* the precision of the approximation in using the lambda distribution
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very good. We will discuss this further in Sections 2 and 4 of

Chapter 1.

It is well known that for a symmetric distribution the sample

median is an unbiased estimate of the location parameter and is robuis:

in the presence of contamination from heavy-tailed distributions.

Hence selection procedures based on the sample medians, under the

formulation of the subset selection approach, have been developed for

several distributions. Gupta and Leong ( 1979 ) have considered a

procedure for selecting the largest of location parameters for the

case of double exponential or Laplace distributions. Gupta and Singh

(1980 ) have studied the case of normal distributions and Lorenzen

and McDonald (1981 ) have considered the case of logistic distribu-

tions.

Here we consider some selection pr--,,edures based on sample

medians for selecting the population associated with the largest loca-

tion parameter among k populations whose observable characteristics

follow lambda distributions.

In Section l.2 we define the lambda distribution and also discuss

some properties including tail-ordering.

In Section 1 .3, the problem of selecting the population associated

with the largest location parameter is studied for both the subset

selection approach and the indifference zone approach for the syimme-

tric lambda distribution. Some new selection procedures are proposed.

The properties of these procedures such as asymptotic relative

efficiencies (ARE) are studied. Also tables of constants necessary to

carry out the procedures along with ARE's of the proposed selection
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procedures are computed and tabulated. Comparisons of the rules base?-

on medians with the selection rules based on sample means are providpd

for the case of syimmetric lambda distributions with different values

of parameters.

In Section 1.4, an application of the lambda distribution for

approximating some constants used in the selection and ranking prob-

lems for other symmietric theoretical distributions is studied. Com-

parisons between exact values and approximated values are made for the

case of logistic distributions.

As a closing remark, since the lambda distribution can be used

to approximate theoretical continuous distributions, one can get many

(approximate) results including evaluations of constants used in the

various parametric situations for selection and ranking problems by

using a lambda distribution by choosing values of its parameters

properly.

At the end of this chapter, Table I.1 is provided for values of

the scale and shape parameters for symmvetric distributions for

various values of the kurtosis ranging from 1.8 to 9.0 with steps

of 0.1. This table gives 8 significant digits and this is an

improvement over the table of Ramberg, Tadikamalla, Dudewicz and

Mykytka (1979) in terms of both its scope and precision for the

symmetric case.

1 .2 Definition and Properties of the Lambda Distribution

The definition of the family of lambda distributions is as

follows.

- -- - - .. . . . . . - . . .. **. . . .-

7 **
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Definition 1.2.1. Let e, , 2 E 1R1, where E.y I > 0, 8.-2 0

and Yi.Y2 > 0. Let F(.) denote the cumulative distribution function

(cdf) of a distribution and let F(.) be its inverse. Then for

0 < p < 1 and x E IRl, the lambda distribution F(x) is defined by its

inverse cdf as

(1.2.1) x = F- l (p) + 1 p - '2

where e and B are location and scale parameters, respectively, and

'l and Y2 are shape parameters.

If xl = y2 ' the lambda distribution is symmetric. The moments

and the support of the distribution depend upon 6, yl and Y2. For

example, for e > 0, -I > 0 and 02 > O, it has all positive moments of

all order and its support is the interval (e-l/B, 9+1/). On the

other hand,for y < -1, Y2 > I and y, > 1, Y2 < -1, there exist no

positive moments. Ramberg, Tadikamalla, Dudewicz and Mykytka (1979)

have studied these properties in detail and have provided some figures

which characterize well-known continuous distributions by their stand-

ard third and fourth moments. Here we assume that the signs of both

scale and shape parameters are the same for the symmetric case.

The mean, the variance, and the third and fourth central moments

of the lambda distribution are given by

(1.2.2) el e+(I/(y1+l) -

(1.2.3) u2 = {[l/(2-y+l)-2Be(-y+l, Y2+l) + 1/(2-y2+1) -

- [I/(Yl+l) - '/(y2+1 2/B

' ,... ..". " .' ". "- ". "- "- - - -" ' ' " " . "... . " - . .". - . . ../• ". ". ". "- -" ". -" " /.. -

.' .', ' .',' '," . ', , .'-'..' .-. ." -" '.. ... .. -. ., -''.; '" . '.' .'''. .." " .' ." '.' -':-,.' ." " - ." '.-.." ." ' *-..-....-.
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(1.2.4) u 3 { [l/(3.yi+l )-3Be(2.yl+l, -y2+1) + M8e (-Y1+1 2-y2+1)

1/3y-) - 3C1/(2-yl+1) - 2Be(-Y1+l, Y2+1 +

+ l/(2-y2+l))[l/(-y.+1) - '/(-y2+1)) +

3 3+ 2[l/(-yl+l)-l/T+) /

and

(1.2.5) u.4 ={[l/(4-y1+l)-4Be(3y1,+l, _Y+1 + 6Be(2-yl+l, 2-y2+1)

- 4Be(-Y1+l, 3-y2+1) + 1/(4y2+1)1 - 4[l/(3-yl+l)-

- 3Be(2-y1+1, _Y2+1) + 3Be(-y1+l, 2-f2+1) - 1/(3-y2+1)1

[1/(Yl+l) - 1/(-y2+1)) + 6[l/(2y1l+l) - 2Be(-y1+l 'Y2+1 +

+ l/2(-y2+l))[l/(Y1+l)-l/(y2+l)) 2 _ 3(/(yl+l)-

4 4
- /(-y2+1)1 /

-respectively, where Be(a,b) is the beta function with parameters a and

b. For the symmietric case, i.e., y,1 2=~ these can be simplified

* as

(1.2.6) e

-2a

(1.2.7) u2 21/(2y+l)-Be(y+l, y+l)]/s2
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(1.2.8) U3  0 O,

and

(1.2.9) u4 = 2[1/(4y+l)-4Be(3y+l, y+l) + 3Be(2y+l, 2y+l)]/s4.

Hence the standardized fourth moment called kurtosis or a measure of

peakedness, denoted by u4/u2 is

24 ) I/(4y+l) - 4Be(3y+l, y+l) + 3Be(2y+l, 2y+l)

u2  2[1/(2y+l) - Be(y+l, y+l)] 2

Now we discuss some other properties of the family of lambda

distributions. For this, we first discuss tail-ordering of distribu-

tions. The definition of a tail-ordering due to Doksum (1969) is as

follows:

Definition 1.2.2. Let G and H be continuous distributions of random

variables X and Y, respectively. Then G is said to be tail-ordered

1
with respect to H, denoted by G < H, if and only if G(O) = H(O)= y-

t
and H' [G(x)] - x is non-decreasing on the support of G.

For symmetric continuous lambda distributions the

following theorem holds.

Theorem 1.2.1. Let F and G be symmetric lambda

distributions with location parameters el = 2  0 0, scale parameters

s1 and a2, and shape parameters y, and Y2, respectively, where
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>1 'y If 6 1/yl > 82/y2, then

F -< G.
* t

Proof. Let A(x) =G 1 [F(x)) - x. Then

() L [F(x)y 2 -(1-F(x))y2] x.
6 2

Thus

t'xx = 6X L Fx*2 + (1-F(x)) 'Y- dx -I1

*Transforming z aF(x), we have

dF(x) B__________

d Y ZY 1  +(1-z) )-

and thus, since y > y if l/'Yl > 2/2

7P2 z2  +O 2 -I 1

(z ' 1+(1-Z) )-

> 0.

This completes the proof.
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Ramberg and Schmeiser (1974) have derived the kth moment, denoted

by pk, of the lambda distribution with 0 = 0, , yl and Y2 as follows:

* When u' exists,

(1.2.11) = -k )k )iBe(y 1i O  i 
) (")B (y (k-i )+Il, y2i+')

Here by using the method of moment generating functions, the first 4

moments of the sample mean based on n independent random samples from

a lambda distribution with = 0, , -l and 2' where E., -y1 and )2 are

chosen so that the moments exist, are given by the following theorem.

Theorem 1.2.2. Let R denote the samole mean based on n independent

random samples from a lambda distribution with location parameter

0, scale parameter 6 and shape parameters 'l and 12" If values

of 6, Y, and Y2 are such that l  2 , u3 and 4 exist, then they are

given by

(1.2.12) SUM(l)

(1.2.13) 2 2 ~ sum (1),
n6 nB

(1.2.14) SU3 + (n'I)(n-2)SUM3(1)

and

4'.';-:/''"'J)" ;?'' .?:> '> . ' . ' " ,K. ';.' ','_'.-, ,-;,,.-- - -,-,,.- - ..
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(1.2.15) u = SUM(4) + (3n-I)SUM2 (2) + j-I)SUM(1)SUM(2)

. n3.4 n)3 4  n3 s4

+ 6(n-1)(n-2)SUM
2(1)SUM(2) + (n-l)(n-2)(n-3)SUM

4(l)

fn384 n364

where

SUM(i) = o(j)(-)JBe(.yl(i-j)+l, J l .

j=0yjl

Proof. From the fact that

YR (t) 4 ~n)]
n

and

t

one can get the results by using standard methods, where qO(t) is the

moment generating function of a random variable X which has a lambda

distribution with parameters e = 0, and 2

For a symmetric lambda distribution, i.e., N,= = ' the

following corollary holds.

Corollary 1.2.3. Under the same assumption as in Theorem 1.2.-

anc letting )l 2 = , the following equations hold.

(1.2.16) Il 1 0,

.1

-'

- . **:I4*%~- ~ aa~%~ ~*~. . * -.. .. '
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(1.2.17) C2 = M ,
ne

(1.2.18) 'A3 0 0,

(12.219) U 1 ISUM(4) + 3(n-)SUM2(2)),

and

( 2 SUM(4) + 3(n-1)SUM2 (2)
u2  n SUMZ(2)

-u2

Proof. Since SUM(i) 0 for all i odd for y1  Y2 = Y. one can get

the results from Theorem 1.2.2 and hence the proof is omitted.

For a symmetric lambda distribution, the following remarks can

be made.

Remarks:

(1) From Corollary 1.2.3, one can see that the limiting distribution

of X has kurtosis 3 which is the same value as that of a normal distri-

bution.

(2) The Corollary 1.2.3 can be utilized to approximate the distribu-

tion of the sample mean of some symmetric continuous distributions

which are not infinitely divisible. Goel (1974 ) has derived the dis-

tribution of the sample mean from a logistic population as a series by

using the method of characteristic functions and has provided tables the

cdf for n = 2(1)12 at points 0.00(0.01)3.99 and n 13(1)15 at points

.4

rn .bo*-

.. .. . . ,.w j.., ,,, mm . ~ i mi im mlii.II....-" l .. =
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1.2(0.01)3.89. Using the result of Corollary 1.2.3, the cdf of the
I.

logistic sample mean was approximated. It was seen that the maximum

difference was less than 0.00155 for all values of n. This maximum

error occurs at the point x = 0.6 for all the values of n. For

x > 1.0, the error decreases as x increases and for x E [1.2, 3.9] the

-" maximum error is less than 0.0007 for all n. The above discussion

shows that the distribution of the sample mean of a logistic population

can be aDproximated very well by using the lambda distribution.

1.3 Selecting the Population with the Largest Location Parameter

Based on Sample Medians

1.3.1. The Proposed Rule RT for Subset Selection - Symmetric Case

Let %1Pl2' "'9k be k(> 2) independent populations which are

characterized by observable random variables XlX 2 9...,Xk9 respectively.

Let Xi follow a symmetric lambda distribution with an unknown location

parameter ei, and common known second and fourth central moments

02 and 4  i = 1,2,...,k, respectively. This implies that the random

variables Xi's have common known scale and shape parameters B and ,

respectively, given by equations (1.2.7) and (1.2.9). Also without loss

of generality, we may assume P2 = 1. Let f(.lje i) and F(- iei) denote

the probability density function (pdf) and cdf of a random variable Xi
and let Xij, j 1,2,...,n be n independent observations from

i 1,2,...,k, respectively. Let n - e a (el,...,ek) EIRk) be the

parameter space and let Q= e E ... ek  eo}. Let

e[l ] _ e[2] <...< e[] denote the ordered ei's. The population

[.

4' . '-"'N.-' -".k :-- *" ' ' ,-° ' .' "- - ,' 
"

*w"" " " " . . ..
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associated with e[k ] is called the best population. Also let

denote the population corresponding to eli). It is assumed that

no prior knowledge is available for the correct pairing between [i]

and 1(i)' i - 1,2,...,k. Our goal is to select a nontrivial (nonempty)

subset including the best population so as to satisfy the P*-condition,

i.e., inf Pe(CSIR) > P*, where CS stands for a correct selection

i.e. a selection of any subset which includes the best. For conven-

ience, let n = 2m+l, m > 1, and let Xi: m be the sample median of i.
I1

Let X[1]:m  X[2]:m - .  X[k]:m be ordered Xi:m 's. It is well known

that a sample median Xi:m has a pdf and a cdf

(1.3.1) g(xlei) = (C!!l)4 [F(xIe )]m[l-F(x~ei)] mf(x!ei)
(m!)2 i

and

(1.3.2) G(x~ei) = 'F(xei)(m+', m+l),

respectively, where I x (a,b) is an incomplete beta function with

parameters a and b. Let X(i): m be the sample median corresponding to

Now we propose the following selection rule RT:

RT: Select ri if and only if X i:m Xk]:m d

where d (> 0) is chosen so as to satisfy the P*-condition. Without
0

loss of generality, we can assume that u0 a 0 in O Under this

assumption, let G(.) and g(.) denote the cdf and pdf of the sample

median, respectively. Also under this assumption, let f(.) and F(.)

d,
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denote the pdf and cdf of Xi, respectively. Then the following

theorem holds.

Theorem 1.3.1. For the rule RT,

(1.3.3) inf Pe(CSIRT) inf Pe(CSIRT)
e6 - o  -

(2m !t).c fI k ,1 (m+lm+l)[F(x))m

[l-F(x)]mf(x)dx.

Proof. inf Pe(CSIRT) inf Pe ( is selectedR T)
eEr - e (k)

inf Pr{X > X( d = l...,k-l1o (k):m- . (j):m'o""

k-l
inf f l G(x+e[kj-e[j]+do)g(x)dx
e 2 -- j=l

= G (x+d0)g(x)dx

(m! ] Ik-x )(m+l, m+l)[F(x)]m"
(in! -'F(x+d 0

.l-F(x)] mf(x)dx.

Hence the proof is complete.

Values of d 0  d0 (km,P*) can be obtained for various values of
.-

k,m and P* by solving for the smallest value of do satisfying the

following equation
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(1.3.4) (2m+lo f (xdo )(m+l,m+l)[F(x)]m[l-F(x)]mf(x)dx = P,
(m! 0d

or

(1.3.5) 2 1 I ' n =
) 0 0F ] (t-(1-t))+d

Using (1.3.5) values of d0 were computed. These are given in

Table 1.2 for m= 1(1)5, k = 2,3(2)9,10,11, P* = 0.90, 0.95 and for

specified values of kurtosis (l14/2 ) = 4.6, 5.0, 5.6 and 7.0 with

u2 = I.

1.3.2. Properties and Performance of the Proposed Procedure RT

Now we give some well-known definitions: Let pi denote the

probability that '(i) is selected by a selection rule R.

Definition 1.3.1.

(a) The rule R is strongly monotone in r(i) If pi is nondecreasing

in 8pi when all other components but 0[i ] are kept fixed and pi is

nonincreasing in e[j] for each j f i when all other components are

kept fixed.

(b) For e E -,, R is said to be monotone if pi < Pj for 1 < i < j < k.

(c) For e E s and 1 < i < k, R is said to be unbiased if Pi -< Pk"

Note that strong monotonicity for all i - monotonicity - unbiasedness.

(d) Let ¢i(YlY2.,yk ) be the probability that r(i) is selected by

using any selection rule R based on statistics YlY2....'Yk" Then R

is said to be invariant (symmetric) if

.. .-.- ., % .- .- .- , . . ... ,.... ... ... .. . .; Q . ... ,'.... _.. i n,.. _,_.% . . . .. *..... .
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0 i~l ''i--y'''k = 'jy'"Y""i 'Y)

Now we have the following theorem.

Theorem 1.3.2.

(a) The proposed selection procedure R T is strongly monotone in

'T(j) for all i = 1,2,...,k.

(b) The rule R T is monotone and unbiased.

(c) The procedure RT is invariant.

Proof. (a) The result follows fromr the fact that

(1.3.6) pi Pr{'X~j: _I > X -d , j=1,...,k, j~i}

r G(a+er.]-e.j]+dO)dG(x).
-~j=l 

1
1

j~i

Also the proofs of (b) and (c) follow from (1.3.6). Thus the

proof is complete.

The expected size of the selected subset for the rule T

E e( SIRT) is given by

k
(1.3.7) Ee (SIR,1 ) Pri, (i is selected)

k ~ k
= f r G(x+d 0+6 CiJ-6rj] )dG(x).

j~i

. . . . . .
a' ~ ~ ~ ~ ~% %%%~ a\'%*'.%**..-**...*
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Hence, by using the same argument as in Gupta (1965), one can prove

the following theorem.

Theorem 1.3.3. For given k and P*(1/k < P* < 1),

(1.3.8) sup Ee6(SIR T) =sup Ee(SIR T) = kfO' Gk- (x+d 0)dGcx) = kP*.
OEn, - eEn - -OD

Note that both inf P(CSIRT) and sup Ee(SIRT) do not depend on the

conmmon e0 E ~.From (c) of Theorem 1.3.2 and Theorem 1.3.3, the

following theorem holds.

Theorem 1.3.4. The procedure R T is minimax among all invariant

rules satisfying the P*-condition.

Proof. For eE

(1.3.9) inf P 6(CSIRT) =inf Pe(C T) Pe (CIT)
eE - a i -0

and

(1.3.10) sup Ee(SIRT sup E (SIRT E (SIR) kP*.

Also for any invariant (symmietric) rule R and 6 E2

k
(1.3.11) E e (SIR) = Prir ben lctdR

k
f O ji(Y11 ... lyk)[ T' g(yj)]dyldy2... IdykOD1 jl

k
ij ~eP0 (CSIR).
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Hence for 6 0 E 09

(1.3.12) E (SIR)-E o(SIRT) k{P 8 (CSIR)-Pe (CSIRT)).

Since the procedure R satisfies the P*-condition, from equation

(1.3.12), one can see that

E E(SIR)> E (SIRT) = sup Ee(SIRT)

- -o es

so that

(1.3.13) sup Ee(SIR) > sup Ee(SIRT).
e En~ eEsi -

Hence the proof is complete.

Now under a slippage configuration, that is, 611] e[klJ

6[k]-6, where 6 > 0, the asymptotic relative efficiency (ARE) of the

1roposed rule RT relative to the Gupta-type procedure RG, which will

be defined later, will be discussed. First, the definition of the

ARE is given as follows.

Definition 1.3.2. Under a slippage configuration with > 0, let S'

* be the number of non-best populations selected. Also given 0 L 1,

let nl( ) and n2( ) be minimum numbers of observations so that

(1.3.14) Ee (S'IR i) = , i = 1,2,

for procedures R1 and R2. Then the ARE of the rule R2 relative to R

is defined by

*,
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(1.3.15) ARE(R2 ,R~j&) r 1

c4~O 2

provided that both procedures R and R2 satisfy the P*-condition. In

the sequel, without loss of generality it will be assumed that

= [k-1] [k]- 6 = 0. Also the Gupta-type procedure RG is defined

by

RG: Select i if and only if Ri amax X - G
j J

where R,'s are sample means and dG is a nonnegative constant chosen

so as to meet the P*-condition. Let nT and nG be the sample size for

procedures RT and RG, respectively. Then as nT - and nG* -, one can

see that, by use of the central limit theorem,

(1.3.16) inf PO(CSIRG fkl(x+dGV G)do(x),

(1.3.17) inf Pe(CSIRT) f0 "k'l(x + !T)dO(x),

(1.3.18) E (S'jRG) (k-l)f t - G An Gl4(x-(6-dG) nG)d,(x ) ,

and

(1.3.19) Ee(S'IRT) (k-l)f k-2 (x+do/oT),(x-(6-do)/OT)do(x),

where 2 1 I/4n f2 (O).
T T
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AS E 0, nl..Tc and n G(E) become sufficiently large and thus from the

equations (1.3.16) and (1.3.17), dG vn;-do/G Also the integrals

of the right hand sides of equations (1.3.18) and (1.3.19) exist and

integrands of both integrals are bounded and finite on P l* Thus

(1.3.20) Ee.(S'IR G) Ee6(S'IR T)

0 .

Since 4)(x) is strictly increasing in x, it can be seen that

nG 2
S4f (0) for any 6 > 0.

Hence the following theorem holds.

Theorem 1.3.5. Under the slippage configuration as defined above,

(1.3.21) ARE(RT R !6) = f2 (0)

The following table proviies ARE(R Ts R G16) for various values of

a and y for the following values of kurtosis 4/2 -1.8, 3.0, 4.2,

5.0(1.0) 9.0, with v2 1
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Values of ARE(RT, RG 6 )

J /p 2 6 Y ARE(RT , RGI6)

1.8 .5744 1.0000 .3299

3.0 .1974 .1349 .6454

4.2 - .0659xlO "2 -.0363x10"2  .8235

5.0 - .0870 -.0443 .9068

6.0 - .1686 - .0802 .9886

7.0 - .2306 - .1045 1.0532

8.0 - .2800 - .1233 1.0867

9.0 - .3203 - .1359 1.1503

It is already known that for the slippage configuration,ARE's of

the median selection rules for the normal, logistic and double expo-

nential distributions are 0.6366, 0.8225 and l.0000, respectively.

On the other hand, for values of kurtosis 3.0, 4.2, and 6.0

for the lambda distribution, the corresponding values of ARE(RT,RG1)

are 0.6454, 0.8235 and 0.9886, respectively. These differences are

mainly due to the approximation by lambda distributions with parame-

ters E and y for the corresponding distributions. Also one can see

that when the tail of the distribution becomes heavier,

ARE(RT , RGI6) increases and thus the rule RT becomes as efficient as

the procedure RG and the rule RT is more efficient than the rule RG

for very heavy-tailed distributions.

-1
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Remark: From Theorem 1.2.1 and Theorem 1.3.5 one can see the following:

With the same condition as in Theorem 1.2.1 and under a slippage con-

figuration, the ARE(RT, RG16) for a distribution F, is better (larger)

than that of for a distribution F when F1 < F

Now the performance of the rule RT will be discussed in terms of

P (CSIRT), Ee(S-IRT and Pe(CSIRT)/Ee(S' IRT). Recall that for e E2,

lk-I

(1.3.22) Pe (CSIRT) = '2 f iI 1 (m+l,m+l)
(m!), 0 j=l F[- t-(l-t)y)+do+6[k]-'[j]]

C t(I-t)]mdt,

k
(1.3.23) Ee (S)RT) = i P-(i) is selectedIRT }

= Pe(CS)RT) + Ee(S'iRT),

and

k-ikTl(2re+l) 
! k

(1.3.24) E(S'IRT) r II
,=1 () 0 j=l F[1 {tY-(l-t)Y}+do+ei]-e[J]

ji

(m+l ,m+l )[t (l-t) ]mdt.

Here two configurations are considered, i.e., a slippage config-

uration 6[1 ] =[k-1] = 6 [k3-6 and an equi-spaced configuration

'[1] i72 ] 6[ [k]- -l , where 6 > 0. Under a

slippage configuration equations (1.3.22) and (1.3.24) can be

simplified as

P (CSIRr (ml fk-I (+,+)tltjd
e (m!)2 0 F {t(l-t)>.+6+d

O []

;- . .'...-.-.'-. . ..,'.
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and

Ee (S'IRT) = (k-i) (2m+l)! }1 k-2 (m+l,m+1)
(m!) 0 F[I {ty-(l-t)y}+dO]

1• I(m+l,m+l):.'F[ 1 (t t - ( l-t)'I)+do-6]

•[t(l-t)]mdt.

Values of Pe (CSIRT), Ee(S'IRT), Pe(CSIRT)/Ee(S'IRT) and Ee(SIRT)

under a slippage configuration are computed for 6 = 0.1(0.2)0.5,1.0,

m = 1(2)5, k = 2,5(2)9, P* = 0.90, 0.95 and kurtosis ( 24/u

5.0, 5.6, 7.0 with '2 = 1. These are given in Table 1.3. Similarly,

under anequi-spaced configuration, values of Pe(CSIRT), Ee(S' RT),

Pe(CSIRT)/Ee(S'IRT) and Ee(SIRT) are computed. They are given in

Table 1.4 for 6 = 0.1(0.2)0.5, m = 3,5, k = 5,7, P* = 0.90, 0.95 and

kurtosis 2 = 4.6, 5.6, 7.0. Note that, for k = 2, values of

P (CSIRT), Ee(S'IRT), Pe(CSIRT)/E (S'IRT) and Ee(SIRT) under an equi-

spaced configuration are the same as those of under a slippage config-

uration. From Table 1.3 and Table 1.4, the following remarks can be

made:

(1) As the value of kurtosis increases,values of P e(CSIRT)/Ee(S')RT)

increase and hence the proposed rule RT can be more effective for heavy-

tailed populations.

(2) Values of Pe(CSIRT)/Ee(S'IRT) for P* 0.90 are uniformly larger

than those for P; - 0.95 for all combinations of values of k, m and 6

for slippage configurations and also for equi-spaced configurations.

This may be mainly the reason why an increase in the value of P*

I.

,,,f. ,t-'..' . %%. -._ *"_,,*--",,,"',S..' ,v*-.. ..'* *-..... --'.-.-'.,;. .'-. *..-,... . . .-... ".. . . . . ...-..-.. . . . . . .- ,.,,-.-.-. ...-... ,-..-".-. .... . . .-.. . . . ..-.. . ,,,,. ,
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causes RTto select more non-best populations compared with the

improvement on Pe(CSIRT).

These tabulated values can help in an optimal choice of the value

of P* in the sense of (approximate) maximizing the value of P.(CSIRT)

and (approximate) minimizing the values of E e(S' RT), simultaneously.

(3) An increase in the values of 6 decreases the values of Ee (S' IRT)

more significantly than an increase in the values of m for both

configurations. Also values of Ee(SIRT) decrease substantially as 6

becomes larger for both configurations.

1.3.3. Selecting the t-Best Populations with Indifference Zone

Approach-Symmetric Case

In Section 1.3.1 the subset selection approach for the selection

of the population with the largest location parameter is considered.

In this section, the indifference zone approach to select the t-best

populations for the family of symmetric lambda distributions will be

studied. Let the assumptions and notations be the same as those of

Section 1.3.1 except for s and £0, where for e" > 0 and 1 < t < k, let

%"""., (6": ) = {e { kl[k-t+l]-' k-t] - '

and

~.O~d*1't) = [1] =[k-t] = e[k-t+l]-6* = e[kj -* -

Then our goal is to select the t-best populations associated with

e[k-t+l] , ... [k] without regard to order, and to satisfy the condition

that the probability of selecting t-best populations without regard to

*s* N
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order is at least P* for given 6*, which is also called the P*-
p k

condition, where P* E (1/(t),I) and 6* are specified by the experimenter.

Then the selection rule RI(t) is defined as follows.

RI(t): Select the t populations associated with X[kt+l]:m,.'X [k]: m .

Then the following theorem holds.

Theorem 1.3.6. For 6* > 0,

(1.3.25) inf P (CSIRI(t)) = inf P(CSIRI(t)).(1.3.25) ( *:tW2 BO(6*:t)

Proof. Proof is easy and hence omitted.

From Theorem 1.3.6, the least favorable configuration is £0(6*:t).

Also the minimum size of samples nt which guarantees the P*-condition

is the smallest integer n such that

(1.3.26) inf P (CSIRI(t)) > P*,
2EPO (6*:t)

where

(1.3.27) inf Pe(CSIRI(t)) = tIGk-t(x+*)(l-G(x))tlIdG(x)

t(2m+i)! 0ik-t  (m+l,m+l)[l-l (m+l,m+l)] t -l(m!)2 0 FCI-(p'y-(I-p)")+6 * ]

[p(l-p)]mdp.

Remark. If 12 is not assumed equal to 1, 6* in the equation (1.3.27)

should be replaced with 6*1/1.12.

=1
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Table 1.5 provides the minimum sample sizes for selected values of

kurtosis 4 = 3.0, 4.2, 5.6, 6.0, 7.0, P* = 0.90, 0.95, k = 2,3(2)7,'P4/"2

10, t - 1(1)3 (t < k), and 6* = 0.5 and 1.0 with 2 =

1.4. Applications of the Lambda Distribution

In this section, some applications of the lambda distribution for

the evaluation of the d-values of subset selection approach in the

selection and ranking problem are carried out. Here we restrict our

attention to the symmetric case.

As mentioned in the introduction the lambda distribution can

approximate theoretical continuous symmetric distributions if values

of location, scale and shape parameters are chosen properly. The

following table shows values of scale and shape parameters B and y,

respectively, with which the lambda distribution can be used to

approximate some well-known symmetric distributions with u2 1.

distribution 2 64/1 Y

uniform 1.80 .5774 1.0000

normal 3.00 .1975 .1349

logistic 4.20 -.0659x10 2  -.0363x10 2

Laplace 6.00 -.1686 -.0802

t with 5 df 9.00 -. 3202 -. 1359

t with 10 df 4.00 .0261 .0148

t with 34 df 3.20 .1563 .1016

Cauchy - -3.0674 -1.0000

°d
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Remrk: For the case of Cauchy distribution, entries come from the

table of Ramberg and Schineiser (1972 1.

Now we consider an approximation of values of dG of the procedure

RG defined in Section 1.3.2 for the normal model. If one wants to use

the selection rule RG2 one needs values of dG and these values are

provided by many authors (for example, Gupta (1956), Gupta (1963),

Gupta, Nagel and Panchapakesan (1972 ), among others). But by using

the lambda distribution one can approximate values of dG, denoted by

dG , by solving the equation

(1.4.1) r Fkl( x+d6)dF(x) = P*,

where F(.) is a cdf of the lambda distribution with a scale parameter

p = 0.1975 and a shape parameter y = 0.1349. In the following table

values of dG come from Gupta, Nagel and Panchapakesan (1972) and

values of d6 are evaluated from the equation (1.4.1).

P* k dG d
GG

0.90 2 1.8125 1.8126

5 2.5997 2.6024

9 2.9301 2.9339

0.95 2 2.3262 2.3279

5 3.0551 3.0596

9 3.3678 3.3728

0.99 2 3.2899 3.2931

5 3.9196 3.9227

9 4.1999 4.2015

.....................
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From the above table, we see that the values of d6 are fairly

close to those of dG. These agree to at least two decimal places.

Furthermore, values of d6 are conservative (larger than values of dG);

hence the P*-condition will not be violated if one uses d6-values in

, place of dG-values.

Now we consider another approximation of the d-values of the sub-

set selection procedures based on sample medians for the logistic

distribution and compare those values with values from tables of

Lorenzen and McDonald (1981). We know that a logistic distribution

can be approximated by a lambda distribution with a scale parameter

-0.0659x10-2 and a shape parameter y = -0.0363xl - 2 . In the

following table values of dt come from the table of Lorenzen and

McDonald (1981) and values of da are based on the approximation

by using the lambda distribution.

-" I 0.90 0.95

k dt  da  d t  da

2 2 0.879 0.879 1.137 1.137

5 1.274 1.273 1.510 1.510

7 1.377 1.376 1.609 1.609
3 2 0.599 0.598 0.771 0.771

5 0.863 C,. d63 1.019 1.018

7 0.931 0.930 1.083 1.083
7"2 0.514 0.513 0.661 0.661

5 0.740 0.739 0.872 0.872

7 0.797 0.797 0.927 0.926
-T " 2 0.457 0.457 0.588 0.587

5 0.657 0.657 0.775 0.774

7 0.708 0.708 0.823 0.882
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From the above table, we can see that the approximation by using

the lambda distribution works fairly well. The values agree with each
other at least to two decimal places and for many cases they agree up

to three decimal places.

Based on the comparisons made so far it can be concluded that

approximations based on the lambda distribution with proper values

of scale and shape parameters work very well and we may not need

tables for selection procedures for different distributions.

More generally, for any (parametric) statistical inference problem,

one may use the lambda distribution model to get approximate good

results. This advantage may be useful for some package programs

on selection and ranking problems mentioned in the introduction.
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Table I.1

Values of and of the Tukey's symmetric lambda distribution for aiven
kurtosis and unit variance

kurtosis I kurtoi.s
1.8 .5773503 1.0000000 1.9 .5360259 .7315156
2.0 .4951808 .5843119 2.1 .4563041 .4839393
2.2 .4197244 .4092117 2.3 .3854375 .3506705
2.4 .3533229 .3032138 2.5 .3232217 .2637705
2.6 .2949687 .2303522 2.7 .2684053 .2016015
2.8 .2433846 .1765539 2.9 .2197734 .1545019
3.0 .1974514 .1349125 3.1 .1763108 .1173758
3.2 .1562549 .1015705 3.3 .1371972 .0872407
3.4 .1190600 .0741800 3.5 .1017736 .0622194
3.6 .0852749 .0512197 3.7 .0695075 .0410645
3.8 .0544199 .0316561 3.9 .0399657 .0229114
4.0 .0261027 .0147597 4.1 .0127925 .0071401
4.2 -.0006589 -.0003630 4.3 -. 0123069 -.0067065
4.4 -.0241574 -.0130192 4.5 -. 0355787 -.0189735
4.6 -.0465955 -.0246001 4.7 -.0572307 -.0299266
4.8 -.0675053 -.0349774 4.9 -.0774389 -.0397743
5.0 -.0870496 -. 0443366 5.1 -.0963542 -.0486820
5.2 -. 1053681 -.0528262 5.3 -.1141060 -.0567834
5.4 -.1225813 -. 0605666 5.5 -.1308066 -.0641874
5.6 -.1387938 -. 0676566 5.7 -.1465539 -.0709839
5.8 -.1540971 -.0741781 5.9 -. 1614332 -.0772475
6.0 -.1685712 -. 0801994 6.1 -. 1755197 -.0830410
6.2 -.1822868 -.0857783 6.3 -.1888799 -. 0884174
6.4 -. 1953064 -. 0909637 6.5 -. 2015728 -. 0934222
6.6 -.2076855 -.0957974 6.7 -.2136507 -.0980939
6.8 -.2194739 -.1003156 6.9 -.2251605 -.1024662
7.0 -.2307158 -. 1045492 7.1 -.2361444 -.1065680
7.2 -. 2414511 -.1085255 7.3 -.2466402 -.1104247
7.4 -2517159 -. 1122682 7.5 -. 2566820 -. 1140586
7.6 -.2615425 -. 1157981 7.7 -.2663008 -. 1174891
7.8 -.2709605 -. 1191336 7.9 -. 2755247 -.1207336
8.0 -. 2799966 -. 1222909 8.1 -.2843791 -.1238074
8.2 -.2886751 -. 1252ST 8.3 -.2928874 -. 1267242
8.4 -.2970185 -. 1281275 8.5 -.3010709 -. 1294961
8.6 -.3050470 -. 1308313 8.7 -.3089491 -.1321343
8.8 -.3127794 -. 1334063 8.9 -.3165400 -.1346484
9.0 -.3202329 -. 1358618

.. . .. . . . . . . . . . . . . . b .
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Table 1.2

Values of d for the Procedure RT with 2 = 1.

114

2-=4.6
1 2

(E, -y) = (-0.0466, -0.0246)

P* k 2 3 5 7 9 10 11

1 0.90 1.0970 1.3599 1.6026 1.7380 1.8317 1.8696 1.9033
0.95 1.4282 1.6788 1.9139 2.0462 2.1382 2.1755 2.2088

2 0.90 0.8606 1.0640 1.2492 1.3511 1.4210 1.4491 1.4740
0.95 1.1148 1.3064 1.4836 1.5821 1.6500 1.6774 1.7017

3 0.90 0.7305 0.9021 1.0571 1.1417 1.1996 1.2227 1.2433
0.95 0.9440 1.1046 1.2520 1.3334 1.3893 1.4117 1.4316

4 0.90 0.6455 0.7966 0.9325 1.0064 1.0567 1.0768 1.0946
0.95 0.8330 0.9739 1.1027 1.1734 1.2219 1.2413 1.2585

5 0.90 0.5846 0.7210 0.8434 0.9098 0.9549 0.9729 0.9883
0.95 0.7537 0.8806 0.9963 1.0597 1.1030 1.1204 1.1357

u" 4 5.0
2
112

(, ) = (-0.0870, -0.0443)

m P* k 2 3 5 7 9 10 11

1 0.90 1.0798 1.3399 1.5813 1.7166 1.8107 1.8488 1.8827
0.95 1.4085 1.6575 1.8924 2,0252 2.1180 2.1557 2.1893

2 0.90 0.8451 1.0455 1.2285 1.3295 1.3990 1.4270 1.4518
0.95 1.0960 1.2853 1.4609 1.5589 1.6266 1.6539 1.6782

3 0.90 0.7165 0.8852 1.0380 1.1216 1.1788 1.2018 1.2221
0.95 0.9267 1.0849 1.2305 1.3111 1.3665 1.3887 1.4085

4 0.90 0.6328 0.7811 0.9148 0.9876 1.2373 1.0572 1.0748
0.8171 0.9557 1.0825 1.1524 1.2003 1.2195 1.2365

5 0.95 0.5728 0.7067 0.8270 0.8923 0.9367 0.9545 0.9702
0.7389 0.8636 0.9774 1.0400 1.0826 1.0998 1.1150

...... .. . .. . .. ,..-..-. .--.. ... . . .
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Table 1.2 (continued)

2= 5.6

(~ y = -0.1389, -0.0667)

m P* k 2 3 5 7 9 10 11

1 0.90 1.0589 1.3156 1.5553 1.6905 1.7849 1.8233 1.8575
0.95 1.3845 1.6315 1.8661 2.0000 2.0934 2.1315 2.1656

2 0.90 0.8264 1.0231 1.2035 1.2828 1.3506 1.4001 1.4023
0.95 1.0732 1.2597 1.4334 1.5064 1.5727 1.5996 1.6234

3 0.90 0.6997 0.8649 1.0149 1.0973 1.1537 1.1764 1.1965
0.95 0.9059 1.0611 1.2045 1.2840 1.3388 1.3609 1.3805

4 0.90 0.6175 0.7625 0.8135 0.9500 0.9980 1.0335 1.0344
0.95 0.7979 0.9336 1.0582 1.1093 1.1558 1.1745 1.1910

5 0.90 0.5586 0.6894 0.8071 0.8712 0.9148 0.9323 0.9477
0.95 0.7210 0.8430 0.9546 1.0160 7.0580 1.0749 1.0900

'04
2 7.0

(s, ) =(-0.2306, -0.1045)

m P* k 2 3 5 7 9 10 11

1 0.90 1.0231 1.2736 1.5101 1.6448 1.7395 1.7782 1.8127
0.95 1.3427 1.5861 1.8196 1.9540 2.0489 2.0877 2.1225

2 0.90 0.7947 0.9851 1.1608 1.2587 1.3266 1.3541 1.3785
0.95 1.0345 1.2159 1.3862 1.4820 1.5488 1.5759 1.6000

3 0.90 0.6714 0.8306 0.9759 1.0560 1.1111 1.1334 1.1531
0.95 0.8706 1.0209 1.1604 1.2380 1.2917 1.3134 1.3327

4 0.90 0.5917 0.7312 0.8576 0.9270 0.9744 0.9935 1.0104
0.95 0.7656 0.8965 1.0172 1.0840 1.1300 1.1486 1.1650

5 0.90 0.5349 0.6605 0.7739 0.8357 0.8780 0.8949 0.9099
0.95 0.6911 0.8086 0.9164 0.9758 1.0166 1.0330 1.0475
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Table 1.5

Values of sample sizes for the Rule R (t) with unit variance

k 2 3 5 7 10
Kurto- t

is P* 1 1 2 1 2 1 2 3
3.0 0.90 0.5 21 31 43 51 49 61 55 69 75

1.0 5 9 11 13 13 15 15 17 19

0.95 0.5 35 47 59 67 65 77 73 87 93

1.0 9 11 15 17 17 19 19 23 23

4.2 0.90 0.5 17 25 33 41 39 47 45 55 59

1.0 5 7 9 11 11 13 11 15 15

0.95 0.5 27 37 47 53 53 61 57 69 73

1.0 7 9 13 15 13 17 15 19 19

5.6 0.90 0.5 15 21 29 35 33 41 39 47 51

1.0 5 7 9 9 9 11 11 13 13

0.95 0.5 23 31 41 47 45 53 51 59 63

1.0 7 9 11 13 13 15 13 15 17

6.0 0.90 0.5 15 21 29 35 33 41 37 45 51

1.0 5 7 9 9 9 11 11 13 13

0.95 0.5 23 31 39 45 43 51 49 57 61

1.0 7 9 11 13 13 13 13 15 17

7.0 0.90 0.5 13 21 27 33 31 37 35 43 47

1.0 5 5 7 9 9 11 9 11 13

0.95 0.5 21 29 37 43 41 49 47 55 59

1.0 7 9 11 11 11 13 13 15 15_

... * . . . ... 4,. . .*~ 4 ***..%
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CHAPTER II

ISOTONIC PROCEDURES FOR SELECTING POPULATIONS

BETTER THAN A CONTROL FOR TUKEY'S GENERALIZED

LAMBDA DISTRIBUTIONS AND LOGISTIC DISTRIBUTIONS

2.1 Introduction

The problem of selecting a subset containing all populations

better than a control or standard has been considered by many authors

under different formulations. Dunnett (1955), Gupta and Sobel

(1958 ), Gupta ( 1965 ), Rizvi, Sobel and Woodworth ( 1968),

Bechhofer ( 1968), Huang (1974), Naik (1975), Turnbull (1976),

Brostr8m ( 1977 ), and Gupta and Singh ( 1979 ) have studied this

problem. Using a decision-theoretic Bayesian approach, Gupta and

Kim (1980), Gupta and Hsiao (1981), Gupta and Miescke (1984)

have also considered this problem. For further references, see

Gupta and Panchapakesan (1979 ) and Dudewicz and Koo (1982).

However, most of these papers assume that there is no knowledge

about the correct ordering among unknown parameters. But in

practice, there are cases where the experimenter may know the

correct ordering even though the values of parameters are unknown.

For example, in the pharmacological studies, a higher amount of

acetaminophen in the pain reliever will result in a quicker effect

on relieving fever. In this situation, when the experimenter
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considers the time taken to reduce the temperature to a certain

degree as a measurement of the effect, the experimenter knows the

correct ordering among several pain relievers with different

amounts of acetaminophen even though the true values of the times

are unknown. For this case then, it is reasonable to assume an

ordering prior. Selection procedures under the assumption of ordering

priors are, in general, concerned with isotonic inference. Recently

Gupta and Yang (1984) have considered isotonic selection procedures

for the case of normal populations. They have also considered some

isotonic procedures under the assumption of partial ordering. Gupta

and Huang (1983 ) have studied isotonic procedures for the case of

binomial populations and Gupta and Leu (l983b) have proposed and

studied isotonic selection procedures for unknown guarantee lifetimes

in the case of two-parameter exponential populations. Huang ( 1984)

has also proposed and studied a nonparametric isotonic selection

procedure.

In this chapter we investigate isotonic selection procedures for

the family of lambda distributions and for the logistic populations.

As pointed out earlier, the lambda family of distribution was

defined by Tukey (1960) and generalized by Ramberg and Schmeiser

(1972, 1974). It is well known that the lambda family of distri-

butions can be used to approximate many univariate continuous

distributions very well as shown in Chapter 1. For further dis-

cussion relating to the lambda family of distributions, reference

should be made to Section 1.2 of Chapter 1. Here we restrict
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ourselves to the family of symmetric lambda distributions. We also

study the logistic distribution which is frequently used as a model

in biological assay problems, (see for example, Berkson (1944, 1951,

1953) and Finney (1947 )).

In Section 2.2, we introduce notations and definitions used

in this chapter.

In Section 2.3, some isotonic selection procedures are proposed

and studied for symmetric lambda populations and for the logistic pop-

ulations. Especially, we investigate the approximations of constants

used in the proposed procedures mainly because of difficulties in-

volved in obtaining the exact distribution of sums of sample medians.

For both the lambda distribution and the logistic distribution,

moments of sums of sample medians are derived.

2.2 Preliminaries

Let z0 '7l"'"*9rk be (k+l) independent populations, where 0

can be regarded as a control or standard population. Let a random

variable Xi be the observable characteristic of ir. and let Xij,

i = 1,2,...,n be n independent random samples from ri, i - 1,...,k,

respectively. Let F(-Ie i, &) be a cumulative distribution function

(cdf) of the random variable Xi, where ei is an unknown location

parameter that we are interested in and t is a vector of nuisance

parameters which are assumed to be common and known. For the lambda

populations, & is a vector of the common known scale and shape

parameters and for the logistic populations, is a comnon known

variance. The value of e0 associated with r0 may or may not be

-A known. A population ri is said to be "good" ("bad") if ei  (<) 0 .

#1
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Assume that we have a simple ordering prior of el,... ,ek. Without

loss of generality, let 6e 2 
-

... < ek. Of course, the true values

of e.'s are unknown. Our goal is to select a nontrivial subset which1

includes all good populations with the reouirement that the minimum

probability of a correct selection (CS) be at least equal to a

preassigned number P*.

Let zi = {e = (e0,el ... ek) - < el - 2  " ''* k

-- ®<e 0 < -} be the parameter space, where ? c Ik+l Also let us

define

0 = {e E a*k 0',

'i Ole 6 ie~ < 6 t k i , i = 12 . .k l

and

k = {e E i e < 6 1

k

Then c..'s are mutually disjoint sets and i2 U Qi We now give

some definitions.

Definition 2.2.1. A selection procedure R is called isotonic if

and only if whenever it selects .wih *-i, it also selects 7i when

i j"

Definition 2.2.2. A real-valued function f defined on a poset (S, .),

where < denotes a binary partial order on a set S, is called isotonic

if f preserves the partial order on S.

Definition 2.2.3. Let g be a given function on (S, <) and let W be

a given positive function on (S, <). An isotonic function g* on

% 2o



WIF

55

(S, ) is called an isotonic regression of g with weights W if it

minimizes the sum [ [g(x)-g*(x)]2W(x) over a class of all isotonic
xES

functions on S.

From Barlow, Bartholomew, Bremner and Brunk (1972), it is known

that there exists one and only one isotonic regression of a given g

with weights W on S when S is simply ordered. Also the isotonic

estimator of ei can be found by using the max-min formulas given by

Ayer, Brunk, Ewing, Reid and Silverman (1955) as follows.

Let X. be the sample median of ri based on n independent random
1

samples Xil,...,Xin, i = 1,2,...,k, respectively. For convenience,

let n = 2m+l, m > 0, and let the common known variance be 1 for both

lambda and logistic populations. Also let C2 denote the common known

variance of Xi" Let us define a finite set S -{l. .,eklel ... e}

and let W(e.) wi = n, i = 1,2,...,k, respectively. Then by the

max-min formulas, the isotonic regression of g with weight W is g*,

where

x +.

g*(ei) = max min .]' l~s~i s~t/k

Hence the isotonic estimator xi:k of ei is

X = max X

i:k l<s<i :k'

and

X s, +X s l s + ...+ xk
Xs:k = min Xs'Il

for i = 1,2,...,k, respectively.

.5 .e ~K-: -•:~ *.5• 5-5 
•

. * %5 5..* *.~ .5



L W i

56

We give the following definition for the sake of completeness.

Definition 2.2.4. Let F(.e i , ) be a symmetric lambda family of

distributions. Then, for Y (, y) and 0 < u < 1,

(2.2.1) F-l(u) 8 +-; [u -(l-u)'],

where ei is a location parameter, is a scale parameter and y is a

shape parameter.

For further discussion on the properties of the family of lambda

distributions, reference should be made to Section 1.2 of Chapter 1.

2.3. Proposed Procedures R, and R2.

We confine ourselves to the class of isotonic procedures which

satisfy the P*-condition, i.e., for an isotonic rule R,

(2.3.1) inf P e(CSIR) P*.
e0"

2.3.1. Definitions of the Proposed Rules R1 and R2

The cases of both e0 known and 6 unknown are considered.

(A) e0 known

Since e is known, no samples need to be taken from the control

population w0. Now the ru!c k, is proposed as follows:

Procedure R1: Steps i = 1,2,....k-l, are defined as follows:

Step i. Select the subset iTi .. k and stop if

"'.. i ,eo  CdO1)

i:k 0 i:k'

.9

";'.

*9 9 .S a *.p|bS *t* ~ W ~ *
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otherwise reject 7i and go to Step i+l, and

Step k. Select rk if

% ~Xk:k >6o0 -C
-~ L' k:k'

otherwise reject rk and decide that none of k populations are

good.

Here d0, i = 1,2,...,k are chosen to be the smallesti :k'
non-negative constants so that the procedure R1 is isotonic and

meets the P*-condition. Since

(2.3.2) inf P (CSIR1) inf inf P (CSIRI),
e2 - l<i<k e -

the P*-condition is equivalent to

(2.3.3) inf Pe(CSIRI) > P*, for i = l,...,.

ee i  -

Also, for any E o, 1 < i < k, let

. Zi: k =min Iis "2 ""' -iP'+

where

• "X. - ei
= i =l ,. ,k.- ~i C ''..

Then

(2.3.4) P6 (CS IR) .Pe U (X. >k d~

k-i+l (XL ka P el U U (X k > OOCdl))

. X•1 1

...........................................o.
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,k-i+l j - e 0:!> Pr L U (Zk + _C > -d J~)
" i - I j k=l I k C - "-W 

,

which is non-decreasing in et, k a 1,...,k-i+l. Thus

(2.3.5) inf Pe(CSIRI)> Pr{Zki+lk >-d()
. . 1i+ 

l :k

Also one can see that

fk-i+l
(2.3.6) inf Pe(CSIR) < U ( . > e0- )- j :k 0 :

Pr{Zk-i+l:k > " k-i+l:kl

where e* = (60 0 ... " ' eO. ..960)"

i terms

Since Zk-i+l:k has the same distribution as Zl: i, the following

theorem holds.

Theorem 2.3.1. For given P*(O < P* < 1) and e E Pi,
Pr > d ( 1 )  k k

(2.3.7) inf P6 (CSIRI) = Pr{ZI1  -k-i+l:k i ".

From Theorem 2.3.1, one can get the following corollary.

Corollary 2.3.1. For a given P*(O < P* < 1), which is
k-i :

the solution of the equation

Pr(Z:i , -- z) =P*

satisfies the P*-condltion for the procedure R1 .

.d.~~~~ ~~~~~~~~ -.. q-.*1-.~ - ~~ea. e.r~~.~
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Proof. The proof is straightforward and hence omitted.

The evaluation of the constants d(1 )  will be discussed ink-i+l:k

the next section.

Remarks:

(1) Since Zk i+l k has the same distribution as Zl:i d-il) kk-i~lk 1: k-i+l:k

d(1) i = 1,2,.. .,k.l :i'' " "

(2) It can be seen that d(1
) is increasing in i.

(B) e0 unknown

Since e is unknown, n independent observations Xol .... ,On

from the control population -n are taken. Let X denote the median

of the above samples. Then the selection procedure R2 is defined

as follows:

Procedure R2: Steps i = 1,... ,k-l, are defined as follows:

Step i. Select the subset {1-i ... , k} and stop if

i:k X0  i:k'

otherwise reject ri and go to Step i+l, and

Step k. Select wk only and stop if

Xk:k Xo - Cd(2)
k:k'

otherwise reject wk and decide that none of them are good populations.

...
"-- •.. ";...T::.-- ..- ' ''.. .;.,, '.;- ' S. -.' .". "..; '""" .? '--- :'','."
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Now similar to Theorem 2.3.1, the following theorem holds.

Theorem 2.3.2. For given P*(O < P* < 1) and e E Pi'

(2.3.8) inf P(CS ) (SdI
2 )  k i . ,k,

2- Pr{Z 1:i - k-i+l:k

where Z0 = (X0-e0 )/C.

Proof. The proof is analogous to that of Theorem 2.3.1 and hence

omitted.

Corollary 2.3.2. For given P*(O * which is the'k-i+l :k' hc i h

solution of the equation

(2.3.9) Pr{Zl:i > Zo-t) = P*,

satisfies the P*-condition for the rule R2.

Proof. The proof is straightforward and hence omitted.

The evaluation of the constants d (2) will be discussed
k-i+l :k

in the following section.

Remark: It can be seen that for i .l k, d(2) d (2) and

also " is increasing in i.

2.3.2. The Evaluation of Constants d(1 )  and d(2 )•k-i+l :k - k-i+l:k"

Since the evaluation of constants d(2 )"  is similar to that
k-i+l :k

of constants dlk-i+1:k' we will discuss here only the evaluation of

constants d (l)
..k-i+l:k"
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Now to solve the equation

(2.3.10) Pr{Z 1 :i > = P*,

the following lemmas are needed. First the lemma due to Gupta and

Yang (1984) based on the theory of random walk will be cited with-

out proof.

Lemma 2.3.1. Suppose Ul, U2,... are iid random variables whose

distribution is not concentrated on a half-axis. Let So = 0,

Sj = Ul +...+ U, j = 1,2,..., respectively and let Ui a Ti-x$

where E(Ti) 0, for i = 1,2,..., respectively. Let

V. = min S
l<r<j 1 

Sr " Then

(2.3.11) Pr(V W 2> x) = T > x)Pr(S,.j+ 1 > 0),(2..11 PrV + _ ) -TTj=O

where Pr(V0 > x) 1 I for all x.

To use Lemma 2.3.1, first it is necessary to evaluate the

quantity Pr(Sj+l > 0), where for ease of notation Sj denotes the

sum of j iid sample medians for both symmetric lambda and logistic

populations. To find the exact and closed form of distribution of

S. is very difficult. Hence one can consider several ways to

approximate the quantity Pr(S.j+i > 0), for example, (i) Cornish-

Fisher expansion (ii) Monte Carlo Method (iii) Approximation by

using a lambda distribution. Since the lambda family of distribu-

tions can be used to approximate many theoretical distributions

very well, provided that the values of scale and shape parameters

are properly chosen (based on the standardized second and fourth

• - .. ... . -. . .. ., ,- -.. .o. . -. ..- .- .- ;... ... .; .''-.. .'-...'--.. ..-- - - . ,-.. . .-. .. .-V V.. '
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moments), the method of approximation by a lambda distribution will

be applied. Hence it is necessary to compute the second and fourth

central moments of the sum of k sample medians from k iid symmetric

lambda distributions with mean 0 and variance 1. The same problem

for the case of logistic distributions will be discussed later.

Lemma 2.3.2. Let w r be the rth central moments of the sum of k

sample medians from k iid distributions based on a common sample

size n = 2m+l, m > 0. Then for k symmetric lambda distributions

*. with common scale and shape parameters 6 and *y, respectively,

(2.3.12) 2 2k r(2m+2) [2(m+l)r(m+i+2y)-[r(m+l+ ) 
]2]

2[ (m+l) 2  (2m+2+2-Y)

and

(2.3.13) 12k(k-1) { [rtm+)], {r(me)r(m+1+2)[P(m+1+2y)] ~+

+ 2kr(2m+2) {r(m+l)r(m+l+4y)
6 4[ n(m+l )]2r(2m+2+4y)

2-4r(m+l+y)r(m+1+3N) + 3[r(m+l+2N)]21,

where r(.) is a gamma function.

Proof. Let k(t) be the moment generating function of the sum of k

iid sample medians. Then it is well known that tPk(t) kyi(t)]

Also one can get that

* .% ..* . e
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.€ (2.3 14) l~t) rr(2m+2) ! !()t +

(2. 34) t) Be(m+l+jy, m+l+iy),Jr(re+l)] 2 j 0 k 0 k!jis~ g '

where Be(a,b) is a complete beta function with parameters a and b.

Thus by the standard method, one gets the result. Hence the proof

is complete.

Remark:

In addition to Lemma 2.3.2, '6 is computed and is given as

follow:
(2.3.1s>3

( 15k'kl'k-2' 4r(2m+2) A3 +
(2315 6 2's 1r~~l

.- r12m+2 )  2A r(2m+2).+ 15k(k-)[r(m+l)]2 A + kA3 r(m+])2

where

(2.3.16) A1  L {Be(m+l, m+l+2y) - Be(m+l+y, m+l+y)),
1 2

(2.3.17) A2  2 {Be(m+l, m+l+4y) - 4Be(m+l+y, m+l+3y)

+ 3Be(m+l+2N, m+1+2-y) ,

and

(2.3.18) A3 = {Be(m+l, m+l+6) - 6Be(m+l+y, m+l+5y)

+ 15Be(m+l+2"y, m+l+4y) -

- lOBe(m+l+3y, m+l+3y}).

I

.
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This result for '6 (and higher moments) can be used if one wants

to use the Cornish-Fisher expansion.

To find the proper values of the scale and shape parameters of

a lambda distribution from Lemma 2.3.2, values of kurtosis for the

sum of k sample medians based on n = 2m+l samples from lambda dis-

tribution with mean 0 and variance 1 are given in Table 11.1 for

k = 1(1)5(2)11, 15, 20 and m = 0(1)5(2)9,10(5)20,30,50 when the

underlying lambda distributions have common kurtosis 4.6, 6.0 and

7.0. Furthermore, based on Lemma 2.3.1 and Lemma 2.3.2, values of

d(1 )  for the lambda populations are computed. They are givenk-i+l ;k

in Table 11.2 for m = 0(1)3(2)9,10, P* = 0.75, 0.90, 0.95, .099 when

the underlying lambda populations have common variance 1 and common

kurtosis 4.6, 6.0 and 7.0.

For the case of logistic population, the following lemma, which

is similar to Lemma 2.3.2, holds.

Lemma 2.3.3. Let n = 2m+l, m > 0 be the common sample size of k

iid logistic populations. Then the second and fourth central moments

of the sum of k sample medians from k logistic population are:

(2.3.19) 2 1 2 m 1
a

and

(2.3.20) 12k(k+l) [ _ _ r 1
_4 a4 90 L1_1

'- +7 [4 - / ( - Ja_ iil i
1 2k 2  T2 mn 12 4 m1

a i=1, _j2l I -

where a =ib73.

.
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Proof. Noting the fact that

(2.3.21) Lk(t) = [I - -t/a)2J4

the proof is analogous to that of Lemma 2.3.2 and hence orritted.

Similar to the case of lambda populations, values of kurtosis

for the sum of k sample medians based on n = 2m+l samples from

logistic distributions with common variance 1 are computed. These

are given in Table 11.3 for k = 1(1)5(2)11, 15, 20 and

m = 0(1)5(2)9, 10(5)20, 30, 50. Also based on Lemma 2.3.1 and

Lemma 2.3.3 values of dl) for the logistic populations are computed.1 :k
These are tabulated in Table 11.4 for m = 0(1)3(2)9, 10, P* = 0.75,

0.90, 0.95, 0.99 and k = 1(1)7.

2.3.3. Expected Number of Bad Populations in the Selected Subset.

Suppose e0 is known and thus, without loss of generality, let

60 = 0. Let B be the random size of bad populations in the subset

selected by the procedure R1. Then the expected number of bad

populations due to the selection procedure Rl, denoted by E (BIRI),

can be used as a measure of the efficiency of the rule Rl , Now

for any j, 0 < j < k,

(2.3.22) sup Ee(BIR l ) = sup P { U (X. i:k
_EG k-j - tE kj k=l i=li k -

j r_
- Z Pr{ U (Z -d()

r=l i 1:
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Also under the same assumption as that of the rule R1 let us

consider an alternative rule R which uses a fixed constant d, and

selects a subset simultaneously. This rule R3 is

S: Select 7i if and only if Xik .1 - Cd3  for i = 1,2,...,k,

where d3(> 0) is chosen so as to satisfy the P*-condition. Then

one can see that d3 = d I) and also3 :k

j r
(2.3.23) sup E_(BR 3) Pr: -(Z . dr1 eE 3~ r~l i 1  i:j 3

Now the following theorem holds.

Theorem 2.3.3. For any j, 0 j K

(2.3.24) sup Er(B RI) <sup EI(BiR 3).

k-j k-j -
.

Proof. The proof is straightforward and is based on the fact that

d =I d~l)- < d~l) dJ:k 1:k-j+l - :k 3

From the above theorem P, 4s uniformly better than R3 in terms

of the number of bad poDulations in the selected subset.

2.3.4. Another Procedure RM.

Since the lambda family of distributions is not infinitely

divisible, it is very hard to find the exact closed form of the

distribution of the mean of samples from the lambda distribution.

T,
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This is also true for the logistic distribution. But as we have

discussed in Chapter 1, the lambda distribution can be used to

approximate a univariate continuous theoretical distribution precise

enough, and thus we can use a lambda distribution to approximate the

distribution of the sample mean by computing its second and fourth

moments. Thus, when this kind of approximation is acceptable, we

can consider another isotonic procedure RM based on sample means

instead of sample medians. Here we consider the case of lambda

populations with e0 known. Now we define the isotonic procedure

RM as follows:

Procedure RM: Steps i = l,...,k-l, are defined as follows:

Step i. Select a subset {ii'"'.kr
} and stop if

. M. M

,i:k > 0O - CMdi:k'

otherwise rejct ni and go to Step i+l,

and

Step k. Select 7k and stop if

im- M
S- Cmd:k'

otherwise reject r k and decide that none of populations are good,

where

* !
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6I

A m s:k'

i'. l<s<i

- . - s+.. JXk

s:k -n s""' k-s+l -,

Jn

n-1 n j~l Xij

and

Var( i) C2

Here d :k are the smallest nonnegative constants such that thei:k

procedure RM is isotonic and meets the P*-condition.

Now similar to that for the procedure R1 , the following theorem

holds.

M
Theorem 2.3.4. For given P*(O )P* ), d which is the,.. ~ ' -i+l:k

solution of the equation

(2.3.26) Pr{Z: i > -z: P*

satisfies the P*-condition for the orocedure RM , where

Z i  : 9
CM

and

,,." = min. .

,N- :i 1 "''. %
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Proof. The proof is similar to that of Corollary 2.3.1 and hence

omitted.

To solve the equation (2.3.26), we can use the same method as

that in Section 2.3.2 and thus it is necessary to compute second and

fourth moments of the sum of k sample means based on n independent

observations from each of the k populations. Then the following

theorem holds.

Theorem 2.3.5. Let ui be the ith central moment of the sum of k

sample means based on n independent samples from each of the k

lambda distributions with a common scale parameter s and a common

shape parameter y. Assume that the common variance of k lambda

distributions is 1. Then

i..? u2= k sum(2.)
2 2

k {sum(4) + 3(kn-l)sum2(2)},

'J~4 =- {sT () ()4
nB

where

sum(i) = (')(-)JBe(y(i-j)+l, -yj+l),
j=O j

where Be(a,b) is a complete Beta function with parameters a and b.

Proof. The proof is straightforward.

J

",
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Table 11 .2

Values of d~)for the case of synmmetric lambda

populations with coummon kurtosis and commnon variance 1

Kurtosis - 4.6

m i 0.75 0.90 0.95 0.99

0 1 0.5920 1.1949 1.6141 2.5688
2 0.7382 1.2879 1.6796 2.5929
3 0.7836 1.3087 1.6899 2.5938
4 0.8029 1.3148 1.6918 2.5939
5 0.8123 1.3167 1.6922 2.5939
6 0.8174 1.3174 1.6922 2.5939

1 1 0.3860 0.7614 1.0081 1.5278
2 0.4745 0.8109 1.0393 1.5358
3 0.5005 0.8209 1.0433 1.5360
4 0.5111 0.8236 1.0439 1.5360
5 0.5161 0.8242 1.0440 1.5360
6 0.5187 0.8244 1.0440 1.5360

2 1 0.3077 0.6008 0.7885 1.1670
2 0.3758 0.6368 0.8100 1.1747
3 0.3954 0.6437 0.8126 1.1748
4 0.4032 0.6454 0.8130 1.1748
5 0.4069 0.6459 0.8130 1.1748
6 0.4088 0.6460 0.8130 1.1748

3 1 0.2634 0.5115 0.6682 0.9804
2 0.3259 0.5408 0.6853 0.9839
3 0.3369 0.5463 0.6873 0.9839
4 0.3433 0.5477 0.6875 0.9839
5 0.3463 0.5480 0.6875 0.9839
6 0.3478 0.5481 0.6875 0.9839

5 1 0.2127 0.4107 0.5339 0.7743
2 0.2579 0.4331 0.5466 0.7767
3 0.2706 0.4372 0.5480 0.7767
4 0.2756 0.4382 0.5482 0.7767
5 0.2780 0.4384 0.5482 0.7767
6 0.2791 0.4385 0.5482 0.7767
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Table 11.2 (continued)

Kurtosis = 4.6

mi k P* 0.75 0.90 0.95 0.99

7 1 0.1832 0.3527 0.4573 0.6795
2 0.2217 0.3715 0.4679 0.6614
3 0.2325 0.3749 0.4690 0.6614
4 0.2367 0.3757 0.4691 0.6614
5 0.2387 0.3759 0.4691 0.6614
6 0.2397 0.3759 0.4691 0.6614

9 1 0.1633 0.3138 0.4064 0.5840
2 0.1974 0.3303 0.4155 0.5856
3 0.2069 0.3333 0.4165 0.5856
4 0.2107 0.3340 0.4166 0.5856
5 0.2124 0.3342 0.4166 0.5856
6 0.2132 0.3342 0.4166 0.5856

10 1 0.1555 0.2987 0.3866 0.5548
2 0.1879 0.3143 0.3952 0.5563
3 0.1970 0.3171 0.3961 0.5563
4 0.2005 0.3178 0.3962 0.5563
5 0.2021 0.3179 0.3962 0.5563
6 0.2029 0.3180 0.3962 0.5563

Kurtosis - 6.0

0 1 0.5591 1.1526 1.5863 2.6451
2 0.7055 1.2573 1.6683 2.6867
3 0.7537 1.2834 1.6837 2.6897
4 0.7751 1.2920 1.6874 2.6897
5 0.7860 1.2951 1.6883 2.6897
6 0.7920 1.2963 1.6885 2.6897

1 1 0.3619 0.7218 0.9650 1.4973
2 0.4480 0.7731 0.9991 1.5078
3 0.4740 0.7839 1.0040 1.5080
4 0.4847 0.7869 1.0048 1.5080
5 0.4899 0.7878 1.0049 1.5080
6 0.4927 0.7881 1.0049 1.5080



Table 11.2 (continued)

Kurtosis - 6.0

m k P* 0.75 0.90 0.95 0.99

2 1 0.2883 0.5671 0.7490 1.1286
2 0.3537 0.6032 0.7714 1.1340
3 0.3729 0.6103 0.7742 1.1341
4 0.3806 0.6121 0.7747 1.1341
5 0.3843 0.6127 0.7747 1.1341
6 0.3862 0.6128 0.7747 1.1341

3 1 0.2468 0.4819 0.6324 0.9384
2 0.3014 0.5107 0.6497 0.9422
3 0.3171 0.5162 0.6518 0.9422
4 0.3234 0.5176 0.6520 0.9422
5 0.3264 0.5180 0.6521 0.9422
6 0.3279 0.5181 0.6521 0.9422

5 1 0.1992 0.3861 0.5035 0.7356
2 0.2421 0.4078 0.5160 0.7380
3 0.2543 0.4118 0.5174 0.7380
4 0.2591 0.4128 0.5176 0.7380
5 0.2614 0.4131 0.5176 0.7380
6 0.2625 0.4132 0.5176 0.7380

7 1 0.1716 0.3312 0.4305 0.6242
2 0.2080 0.3493 0.4407 0.6261
3 0.2183 0.3526 0.4419 0.6261
4 0.2223 0.3534 0.4420 0.6261
5 0.2242 0.3536 0.4420 0.6261
6 0.2251 0.3536 0.4420 0.6261

9 1 0.1530 0.2946 0.3822 0.5515
2 0.1852 0.3103 0.3910 0.5531
3 0.1942 0.3132 0.3919 0.5531
4 0.1977 0.3139 0.3920 0.5531
5 0.1994 0.3141 0.3921 0.5531
6 0.2002 0.3141 0.3921 0.5531
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Table 11.2 (continued)

Kurtosis = 6.0

m k P* 0.75 0.90 0.95 0.99

10 1 0.1457 0.2803 0.3634 0.5235
2 0.1762 0.2952 0.3717 0.5250
3 0.1848 0.2979 0.3726 0.5250
4 0.1882 0.2985 0.3727 0.5250
5 0.1897 0.2987 0.3727 0.5250
6 0.1905 0.2987 0.3727 0.5250

Kurtosis = 7.0

0 1 0.5437 1.1317 1.5708 2.6758
2 0.6894 1.2413 1.6607 2.7282
3 0.7387 1.2702 1.6792 2.7331
4 0.7610 1.2802 1.6840 2.7331
5 0.7727 1.2840 1.6854 2.7331
6 0.7793 1.2856 1.6857 2.7331

1 1 0.3507 0.7031 0.9441 1.4808
2 0.4355 0.7550 0.9795 1.4925
3 0.4614 0.7663 0.9848 1.4929
4 0.4723 0.7694 0.9857 1.4929
5 0.4776 0.7704 0.9859 1.4929
6 0.4803 0.7708 0.9859 1.4929

2 1 0.2794 0.5513 0.7303 1.1081
2 0.3435 0.5874 0.7530 1.1139
3 0.3624 0.5946 0.7560 1.1140
4 0.3701 0.5965 0.7564 1.1140
5 0.3738 0.5970 0.7565 1.1140
6 0.3756 0.5972 0.7565 1.1140

3 1 0.2391 0.4681 0.6156 0.9181
2 0.2925 0.4967 0.6329 0.9221
3 0.3079 0.5022 0.6351 0.9221
4 0.3141 0.5036 0.6354 0.9221

d5 0.3171 0.5040 0.6354 0.9221
6 0.3186 0.5041 0.6354 0.9221
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Table 11.2 (continued)

Kurtosis - 7.0

rn k P* 0.75 0.90 0.95 0.99

5 1 0.1930 0.3747 0.4893 0.7172
2 0.2349 0.3961 0.5017 0.7197
3 0.2468 0.4001 0.5031 0.7197
4 0.2515 0.4010 0.5033 0.7197
5 0.2537 0.4013 0.5033 0.7197
6 0.2548 0.4014 0.5033 0.7197

7 1 0.1662 0.3213 0.4181 0.6076
2 0.2017 0.3390 0.4281 0.6095
3 0.2117 0.3423 0.4293 0.6095
4 0.2157 0.3431 0.4294 0.6095
5 0.2175 0.3433 0.4294 0.6095
6 0.2184 0.3433 0.4294 0.6095

9 1 0.1482 0.2857 0.3709 0.5363
2 0.1795 0.3011 0.3796 0.5379
3 0.1883 0.3039 0.3806 0.5379
4 0.1918 0.3046 0.3807 0.5379
5 0.1934 0.3048 0.3807 0.5379
6 0.1942 0.3048 0.3807 0.5379

10 1 0.1411 0.2718 0.3526 0.5090
2 0.1786 0.2864 0.3508 0.5104
3 0.1792 0.2890 0.3617 0.5104
4 0.1825 0.2896 0.3618 0.5104
5 0.1840 0.2898 0.3618 0.5104
6 0.1847 0.2898 0.3618 0.5104
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Table 11.4

Values of d~)for the logistic populations with coniron variance 1
1 :k

m k P* 0.75 0.90 0.95 0.99

0 1 0.6047 1.2120 1.6240 2.5349
2 0.7516 1.2983 1.6836 2.5523
3 0.7957 1.3186 1.6900 2.5523
4 0.8135 1.3227 1.6930 2.5523
5 0.8223 1.3227 1.6930 2.5523
6 0.8276 1.3227 1.6930 2.5523
7 0.8298 1.3227 1.6930 2.5523

1 1 0.3961 0.7776 1.0253 1.5385
2 0.4854 0.8263 1.0552 1.5456
3 0.5114 0.8358 1.0590 1.5457
4 0.5219 0.8382 1.0595 1.5457
5 0.5269 0.8389 1.0596 1.5457
6 0.5294 0.8391 1.0596 1.5457
7 0.5308 0.8392 1.0596 1.5457

2 1 0.3158 0.6147 0.8046 1.1862
2 0.3849 0.6506 0.8258 1.1901
3 0.4047 0.6573 0.8282 1.1901
4 0.4126 0.6591 0.8286 1.1901
5 0.4162 0.6595 0.8286 1.1901
6 0.4181 0.6596 0.8286 1.1901
7 0.4191 0.6597 0.8286 1.1901

3 1 0.2704 0.5239 0.6830 0.9973
2 0.3286 0.5533 0.6999 1.0006
3 0.3451 0.5587 0.7018 1.0006
4 0.3516 0.5601 0.7021 1.0006
5 0.3546 0.5604 0.7021 1.0006
6 0.3562 0.5605 0.7021 1.0006
7 0.3570 0.5605 0.7021 1.0006

5 1 0.2183 0.4209 0.5465 0.7902
2 0.2645 0.4436 0.5593 0.7925
3 0.2774 0.4478 0.5607 0.7925
4 0.2825 0.4488 0.5608 0.7925
5 0.2850 0.4490 0.5609 0.7925
6 0.2861 0.4491 0.5609 0.7925
7 0.2867 0.4491 0.5609 0.7925



Table 11.4 (continued)

m k P* 0.75 0.90 0.95 0.99

7 1 0.1881 0.3616 0.4685 0.6740
2 0.2274 0.3807 0.4791 0.6759
3 0.2384 0.3842 0.4803 0.6759
4 0.2428 0.3850 0.4804 0.6759
5 0.2447 0.3852 0.4804 0.6750
6 0.2457 0.3852 0.4804 0.6759
7 0.2463 0.3852 0.4804 0.6759

*9 1 0.1617 0.3219 0.4165 0.5974
2 0.2026 0.3387 0.4258 0.5990

.43 0.2123 0.3417 0.4258 0.5990
4 0.2160 0.3424 0.4268 0.5990
5 0.2178 0.3426 0.4268 0.5990
6 0.2187 0.3426 0.4268 0.5990
7 0.2192 0.3426 0.4268 0.5990

10 1 0.1596 0.3064 0.3963 0.5678
2 0.1928 0.3223 0.4050 0.5692
3 0.2021 0.3251 0.4059 0.5693
4 0.2057 0.3258 C.4061 0.5693
5 0.2073 0.3260 0.4061 0.5691)
6 0.2082 0.3260 0.4061 0.5693
7 0.2086 0.3260 0.4061 0.5693
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CHAPTER III

NONPARAMETRIC SELECTION PROCEDURES AND

THEIR EFFICIENCY COMPARISONS

3.1. Introduction

Since the selection and ranking problems were introduced and

formulated, many papers have been concerned with nonparametric

selection procedures. Since, in practice, there are many situations

in which one cannot observe the complete samples because of lack of

resources, such as time, budget, unexpected accidents, but one can

at least observe ranks. This kind of difficulty occurs in life-

testing very freouently. Also realistically the underlying distribu-

tions of populations are almost unknown to the experimenter and

hence sometimes a parametric approach to the testing hypotheses prob-

lems or other inference problems is sensitive to the assumptions on

the underlying distributions. Thus, to avoid these deficiencies of

the parametric approaches, nonparametric approaches are frequently

used. These can provide robustness against deviations from the

assumptions about the underlying distributions.

Some nonparametric selection procedures in terms of quantiles

were considered by Rizvi and Sobel ( 1967 ), Barlow and Gupta (1969),

among others. Also nonparametric subset selection procedures based

-.-

I.
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on ranks were studied by Nagel (1970), McDonald (1969, 1972, 1973,

1975), Gupta and McDonald ( 1970 ), Hsu (1978, 1981), Gupta, Huang

and Nagel (1979 ), Huang and Panchapakesan (1982), Gupta and Leu

(983a), Gupta and Liang (1984) and Matsui (1984), among others.

Also, Bartlett and Govindarajulu (1968 ) have studied locally optimal

procedures based on ranks even though the functional forms of the

underlying distributions are assumed to be known.

Nagel (1970 ) and Gupta and McDonald (1970 ) proposed and studied

some nonparametric subset selection procedures for the location and

scale models which choose a subset including the best population among

k populations. The latter authors considered locally optimal selection

procedures based on some functions. But the optimal choice of the

score function for these procedures has not been studied. Since the

rank sum statistic is easy to deal with, many proposed nonparametric

subset selection proceducres are based on this statistic.

In this chapter we consider the problem of choosing the optimal

score function for different procedures proposed by Nagel (1970) and

Gupta and McDonald (1970 ). The Tukey's lambda family of distribu-

tions is considered as the distribution for the score function

because this family of distributions can be used to approximate many

theoretical (unimodal) continuous distributions and hence it is easy

to deal with.

In Section 3.2, the problem of selection and ranking with

nonparametric subset selection procedures is formulated and notations

and definitions including proposed procedures are given.

• . • a . . .~ .*\ ., *% * V •: -. - VVh
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In Section 3.3, we evaluate those procedures and compute

constants which are necessary to carry out the procedures. Also

the score function which leads the procedures to be locally optimal

in the neighborhood of some points is introduced and evaluated.

A Monte Carlo study for the optimal choice of the score function

is carried out in Section 3.4. This study indicates that the score

function based on uniform distribution is optimal and robust against

possible deviations from the underlying distributions. Also the

score function which is a weighted sum of ranks turn out to be

optimal for some procedures. Furthermore, it shows that the Gupta-

type procedure is almost uniformly better than another available

procedure. This is not the same conclusion as that in Gupta and

McDonald (1970 ). The reason why these results are different is

due to the lack of number of simulations in Gupta and McDonald

1970) for various underlying populations. Also it is due to the

fact that they only use the rank sum statistics. Some tables

including the values of score functions are constructed. Also some

tables containing the results of simulations are provided.

3.2 Formulation

Let 1T~. k be k(j 2) independent populations and let X.i be

an observable characteristic of 7i, i = 1,2,...,k, respectively.

Assume that a random variable X.i follows a continuous distribution

F(.Ii),and that the family {F(.Ie)) is stochastically increasing in

e. Here we assume that the 6are unknown location parameters. Let

jii l ,...,n be n independent random observations from
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i =1,2,.. .,k. Let R. . denote the rank of the observation Xi

in the pooled sample of kn observations. Define

n
(3.2.1) nH~ = ja(Rij), i 1,..

where a(r) is a score function defined by

- < a(r) = E(T(r)IG)

where T(l) < T(2) < .. <~ T(N) is an ordered sample of size N nk from

a continuous distribution G. Let <...< be the

ordered e, s. Since the family {F(x~p,) is stochastically increasing

in e,

The population associated with ek] i.e. F(xek9 is called

the best. In case several populations have the same largest value

6[k] , randomly one of them is tagged as the best. Our goal is to

select a subset which contains the hest with the usual requirement

on the probability of a correct selection (PCS), i.e., for any

* . procedure R,

*.(3.2.2) inf P (CSIR) _*

where e fe (e1I9 . ek), E 10 is the parameter space.
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Gupta and McDonald (1970) proposed procedures RI(G) and R3(G),

which choose a subset containing the best, and which depend on the

choice of G, as follows:

R (G): Select i if and only if Hi 2max H.-d, i = 1,2,...,k,
j3

and

R3 (G): Select 7i if and only if Hi > 0, i = 7,2,...,k,

where d(1 0) and D(- < D < -) are chosen so as to meet the P*-

condition.

Note that rules R1 (G) and R3(G) are equivalent if k = 2. Also

the rule R3 (G) may select an empty set. A usual choice of G is a

uniform distribution which is appealing because of simplicity.

Let ri) be the population associated with e i]. It is easy

to see that, for rules R1 (G) and R3(G).

"33 (3.2.3) Pr(CSIR 1(G)) =Pr(H (k max H(j) d, j 1,.. .,k-1)

and

(3.2.4) Pr(CSIR 3 (G)) Pr(H(k) 2D

where H(i) is the H. associated with r(i' i 1,2,...,k, respectively.

3.3. Comparison of the Procedures RI(G) and R3(G).

In order to compare R(G) and R3 (G) for various choices of G,

we need first the results relating to the infimum of the PCS and

evaluation of necessary constants.

48
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3.3.1. PCS for RI(G) and R3(G) and Evaluation of Associated Constants

We state below (without proof) the results regarding the

infimum of PCS for rules Rl(G) and R3(G) obtained by Gupta and

McDonald (1970).

Theorem 3.3.1. For procedures RI(G) and R3(G),

(3.3.1) inf (CSIR.(G)) = inf Pe(CSIRj(G)), j = 1,3,
(3 .3.1 i n k

and further, for the procedure R3(G),

(3.3.2) inf Pe(CSIR3(G)) inf P6(CSIR 3 (G)),
6E 2 - .I Q -

where nk : {o E 2 e[k1] : e k]  and , 20 : { E -Je[l] ' [k]'

Remark: When e E QO, procedures R(G) and R3(G) are distribution-

free in the sense that the distributions of the statistics

max H. - H. and H. do not depend upon the underlying distributionl" l < k i

F(.je).

In general, the least favorable configuration (LFC) of the rule

RI(G) is unknown except for k = 2; however, it is known (see Rizvi

and Woodworth (1970 )) that the LFC need not occur in %. In order

to compare rules R (G) and t.3(G), for various choices of G, the
13

constants d and D are chosen to yield approximately the same P* when

0 E The ratio EFF(R) P(CS!R)/E(SIR) is used to compare the

rules, where E(SIR) is the expected size of the subset selected.

Now, taking G to be a symmetric lambda distribution with

location parameter a, scale parameter e and shape parameter -y, for

%.............. .....Z> ......... .# .... -..... ,....-........... .- .............. ,-
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0E P , we have the following:

(3.3.3) a(r) (rE(T(r)IG)

= + r( N r r+l) r(N+ +l)

N
(3.3.4) 1 a(r) = aN,

r-1

and

k(3.3.5) Hi = ak.

Now, let a(r) = a+Cr" When N 2m1l, m > 0, we have from

(3.3.3)

2m+l z -l""'tm+2 = "m' tm+l 0O

In this case, we obtain

(3.3.6) E(Hi) = a,

2 2N(k-1 ) N
(3.3.7) nVar(H.) = I2N

k 2(N-1) j='n+2
N

-2 72

2-2. 1 C 2
(3.3.8) n2 Cov(HiH.) = m+2 - a- N)n-

,kTN-i)T k

and

1

(3.3.9) - 0.<Cov(Hi Hj) 0.

On the other hand, when N - 2m, m > 0, we get

---.
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&2m -"cI .... m+l m

Consequently, in this case also we obtain results (3.3.6) through

(3.3.9) except that the summetions in (3.3.7) and (3.3.8) will be

from m+l to N instead of m+2 to N.

Gupta and McDonald (1970 ) derived the exact distribution of

1 max H. - H. for the case of a(Rij Rii for k = 3 and n = 2(1)5.
J< k J
Also, for a(Rij) = Rij, Hi is the well-known Mann-Whitney U-statistic.

But in general the distribution of max H. - H. is not known since
l<j<k i

it depends on G. However, with a(r)-defined as in (3.3.3), for

k = 3 and d > 0,

Pr{ max H. - Hi < d~ = Pr{H 2-H1 <.d, H3-H1 < d}
1<j<3 - -

can be evaluated on the computer. Without loss of generality, one

can assume that a = 0. Table 111.1, Table 111.2, and Table 111.3

provide, respectively, the values of a(r), d-values for the procedure

RI(G), and D-values for the rule R3(G), respectively, for k = 3,

n = 3,5, and (8, -y) = (0.57735, 1.00000), (0.19745, 0.13491),

(-0.0006589, -0.0003630), (-0.16857, -0.080199). In Tables 111.2

and 111.3, we choose P* = 0.75, 0.90, 0.95, 0.975 and 0.99. The

four choices of (s, y) specified above correspond to the cases

where the lambda distribution can be used to approximate uniform,

normal, logistic and double exponential distributions, respectively,

each with mean 0 and variance 1. Accordingly, these choices are

denoted in the tables by U, N, L, and D, respectively.



89

Finally, we briefly discuss how approximate values of d and D can

be obtained using asymptotic theory.

Theorem 3.3.2. For & E 0 and for the rule RI(G).

P(CSIR (G)) = f (x + A-) d(x),
V

where v2 = Var(Hi) - Cv , Cv is common covariance between H. and H. for

i + j, and o(x) is the cdf of a standard normal distribution.

Proof. By checking Lindeberg's condition, one can show that

nH i/Var(Hi)-C v is asymptotically normally distributed. Hence the

result follows.

The value of d satisfying

f O . , *k'l(x + -L') dt(x) = P*

can be obtained from the tables of Gupta (1963), Gupta, Nagel and

Panchapakesan (1969) or Gupta, Panchapakesan and Sohn (1985), who have

tabulated h = nd/Vv.

Similarly the following theorem holds for the rule R3(G).

Theorem 3.3.3. For e E 10 and N = 2n+l,

P(CSIR3(G) ) ()

I3~I nw

kn4.where w 2 = 2(k-1) kn

nkwk n-l ) j[!n2 i"

Proof. Proof is analogous to that of Theorem 3.3.2 and hence omitted.

From the above theorem, we have D = l(nwp*,/k)

.i~*-*- q~.*.*,..***,

... A""' '5""mimm~ml m ~a lN m I. I I m Pmt
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3.3.2 Evaluation of Constants for RI(G) and R3(G) using scores a5(r).

In this section, we use a score function a*(r) (to be defined

later) in the rules RI(G) and R3(G) and evaluate the associated

constants d and D.

In order to define the scores a*(r), consider the density d(x,(),

6Ep, on an interval containing the origin, satisfying the following

regularity conditions.

(i) d(x,e) is absolutely continuous in e for almost every x:

(ii) the limit

:(x,0) = lim [d(x,e) - d(x,O)]

exists for almost every x:

(iii) lim f ld(x,6)ldx f Jd(x,O)jdx <
e-O -- -W

holds, with d(x,e) denoting the partial derivative with respect to .

Note that the existence of d(x,e) for almost every e is insured at

every point x such that d(x,e) is absolutely continuous in 6. This,

however, does not make the condition (ii) superfluous.

In deriving locally most powerful tests for equality of location

Gupta, Huang and Nagel (1979) used the score function a*(r) defined by

(X r),0)
(3.3.10) M(r) = E d(Xr),0)

where X(r) denotes the r-th order statistic in a sample of size N from

N
the distribution with density d(x,O). For the location parameter case,

a*(r) can be written as

0..................... ...,... .. ,...o...*..... .... ........
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(F -1 (U~r,)0

(3.3.11) a*(r)= E f ( r 0)10)
)0 1f(F

1 (U (r,),O)

where U(r) denotes the r-th order statistic in a sample of size N

from the uniform distribution. Now, specifying d(x,e) to be the

symmetric lambda density with parameters e(location), y(scale) and

(scale), we obtain

f N( l -rI(u- l- du, 6 > 0,
o r1) -Y2 (u -'l1+(l-u)y'l) 2

a*(r) =
0

.f 1l N( N-1 (_6)(y_l~ur-l O-u) N-r(uy-I l_uly-2 ) du, 6<0.

0 r-l y 2(uY-l+(l-u)y'l)
2  d

For k = 3, n = 3,5, and selected values of (6,y) which were

denoted by U, N, L and D earlier in Section 3.3.2, the values of a*(r)

are tabulated in Table 111.4. For the same values of k, n and (s,y),

the constants d and D are given in Tables 111.5 and 111.6, respectively,

with P* = 0.75, 0.90, 0.95, 0.975, 0.99 in each case.

Remark: Nagel (1970) and Gupta, Huang and Nagel (1979) have derived

locally optimal subset selection procedures. It follows from their

results that the rule R3 (G) is locally optimal in the sense that the

rule maximizes the PCS in a neighborhood of any 6 E 0  among all rules

which satisfy inf P(CSIR) = P*.
2E
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3.3.3. Comparisons of the Procedures RI(G) and R3(G).

As we have stated in Section 3.3.1, the procedures R1 (G) and

R3(G) are compared in terms of EFF(R), which is used as a measure of

efficiency. A large value indicates high efficiency.

For a proper comparison of the two procedures, we should have the

constants d and D such that the two procedures will have the PCS

approximately equal to P* for e -Q 0• In our Monte Carlo studies with

k=3, this led to the choice of P* = .90, 0.95, 0.975 for n=3, and

P* - 0.75, 0.90, 0.95, 0.975 for n=5. Further, we considered normal,

logistic, and double exponential distributions all with variance 1, as

three possible choices of the underlying distributions. Let eI, "12'

• 3 be the means of the three populations rl, 2' IT3 . We considered

four different configurations of e = (e1,e2,e3), namely,

I: e = (0,0,0.1), II: e = (0,0,0.5),

III: e = (0,0,1), IV: e = (0,0.5,1.0).

Fo- comparisons using the score function a(r), we chose the four

choices of the parameter (5,y) of the lambda distribution, referred to

by U, N, L, and D in Section 3.3.1. For comparisons using a(r), the

choice of (6,y), denoted by UD, is made so that the lambda distribution

can be used to approximate the underlying distributions with variance 1.

For each choice of the underlying distribution, random samples

were generated by using the random number generator RVP, developed

by Professor Rubin at Purdue University. Our results are based

on 1000 simulations in the case of n = 3 and 500 simulations in

.°~

*i ... . ~ n - *



the case of n=5. Table 111.7 is reproduced for the cases where the unde ,-

lying distributions are normal and logistic distributions with the

*mean configuration II for (n,P*) = (3,0.90); the patterns in the other

case are similar.

Besides comparing the efficiencies of the rules RI(G) and R3 (G)

under each choice of G, we are also interested in comparing the

different choices of G for each rule. Based on the Monte Carlo study,

our conclusions are summarized below.

(1) When the means are close to each other, no rule performs

uniformly better than the other when the underlying distributions are

normal or double exponential; however, as P*.l, the rule R3(G) performs

slightly better than the rule RI(G). With means close to each other,

the situation changes when the underlying distributions are uniform or

logistic: Then, the rule R3(G) performs almost uniformly better than

the rule RI(G).

(2) When the largest mean is sufficiently away from the next

largest, the rule Rl(G) generally performs better than the rule R3(G)

no matter what the choice of G is. This behavior becomes more clear as

n increases. Also, when P* is close to 1, the difference in the perfor-

mances of the two rules narrows down, even though Rl(G) still is better.

(3) Generally, the rule RI(G) performs better than the rule R3 (G)

when the choices of G are the lambda distribution to be the uniform

and the underlying distribution F (i.e., G is U or UD) both with var-

iance 1.

(4) Considering the efficiency of the procedure RI(G), the best

choice of G is the lambda distribution which approximates the uniform

.-.
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distribution with unit variance (i.e., G is U).

(5) For the rule R3 (G), the best choice of G is the lambda distri-

bution approximating the underlying distribution with unit variance.

This is all the more clear when the underlying distributions are normal

or double exponential with their means close to each other.

Considering all the findings of the study, the overall recommerida-

tions will be:

(1) When the means of the underlying distributions are expected

to be close to each other, use either the rule RI(G) with U as the

choice for G or the rule R3(G) with UD as the choice for G.

(2) When the largest mean is expected to be sufficiently away

from the next largest, use the rule R1 (G) with U as the choice for G.
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Table III.1

Values of a(r) under Q0 for k-3,

where Q 0 = {e E pfe1 = e2 = 3}

n a(r) U N L D

3 a(9) 1.38552 1.48669 1.49804 1.49582

a(8) 1.03914 0.93118 0.87778 0.83529

a(7) 0.69276 0.57013 0.52348 0.48933

a(6) 0.34638 0.27334 0.24800 0.22992

a(5) 0. 0. 0. 0.

5 a(15) 1.51541 1.73896 1.79233 1.81764

a(14) 1.29893 1.24834 1.20149 1.15927

a(13) 1.08240 0.94605 0.88346 0.83506

a(12) 0.86595 0.71257 0.65382 0.61080

a(li) 0.64936 0.51350 0.46595 0.43213

a(lO) 0.43298 0.33363 0.30065 0.27756

a(9) 0.21649 0.16441 0.14759 0.13591

a(8) 0. 0. 0. 0.

Note For n-3, a(i) = -a(10-i), i=1,...,4 and for

n=5, a(i) = -a(16-i), i=l,...,7.

. . . .
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Table 111.2

d-values of the procedure R1 (G) under

Q0  {e E flle1me2=e3} for k=3

U N L D

P* n 3 5 3 5 3 5 3 5

0.75 2.423 3.156 2.431 3.173 2.402 3.135 2.388 3.094

0.90 3.809 4.887 3.644 4.825 3.597 4.750 3.538 4.684

0.95 4.501 5.843 4.264 5.744 4.227 5.648 4.114 5.556

0.975 4.848 6.619 4.747 6.490 4.644 6.370 4.545 6.249

0.99 5.194 7.485 5.131 7.288 5.026 7.124 4.920 6.984
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Table 111.4

Values of a*(r) for some values

of (a,y) and n=3,5

n a(r) N L D

3 a*(9) 10.95367 3997.81042 18.30010

a*(8) 6.96000 2999.62692 14.97188

a*(7) 4.31341 2000.12774 10.39644

a*(6) 2.08126 1000.15792 5.30546

a*(5) 0.0 0.0 0.0

5 a*(15) 12.76184 4371.83812 19.28142

a*(14) 9.24459 3748.92094 18.05537

a*(13) 7.09456 3124.76751 15.75637

-a*(12) 5.39158 2500.15400 12.98432

a*(ll) 3.90891 1875.28911 9.93465

a*(10) 2.54966 1250.26286 6.71000

a5(9) 1.25921 625.15168 3.38000

a*(8) 0.0 0.0 0.0

Note n=3, a*(l) = -a*(9).... a*(4) = -a*(6). Also for

n=5, a*(1) = I,(15),..,a*(7)= -a*(9).

.°,
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Table 111.5

Values of d of the rule

RI(G) with a*(r)

n P* N L D

3 0.75 18.05 6996.0 33.47

0.90 27.09 10994.0 52.07

0.95 31.50 12994.0 62.17

0.975 35.35 13996.0 69.02

0.99 38.04 14996.0 74.33

5 0.75 23.51 9368.0 44.30

0.90 35.74 14365.0 67.90

0.95 42.59 16868.0 81.24

0.975 48.15 19365.0 92.21

0.99 54.10 21865.0 104.62

MN.-
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Table 111.5

Values of d of the rule

RI(G) with a*(r)

n P* N L D

3 0.75 18.05 6996.0 33.47

0.90 27.09 10994.0 52.07

0.95 31.50 12994.0 62.17

0.975 35.35 13996.0 69.02

0.99 38.04 14996.0 74.33

5 0.75 23.51 9368.0 44.30

0.90 35.74 14365.0 67.90

0.95 42.59 16868.0 81.24

0.975 48.15 19365.0 92.21

0.99 54.10 21865.0 104.62
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Table 111.6

Values of D of the rule

R3 (G) with a*(r)

n P* N L D

3 0.75 -6.96000 -2997.84061 -13.20912

0.90 -13.18583 -4997.96834 -23.60556

0.95 -15.83242 -5999.91257 -30.67377

0.975 -17.91368 -6998.09608 -34.00199

0.99 -22.22709 -8997.56508 -43.66842

5 0.75 -9.20044 -3746.81187 -16.98243

0.90 -16.89421 -6870,99386 -32.07069

0.95 -21.33906 -8125.32180 -40.66679

, 0.975 -25.02452 -9996.04816 -47.27144

0.99 -29.05684 -11249.13155 -56.14283

.
•
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CHAPTER IV

A TWO-STAGE PROCEDURE FOR SELECTING THE

BEST AMONG GOOD POPULATIONS

4.1. Introduction

Since the early work of Bechhofer, Dunnett and Sobel (1954)

on the two-sample (two-stage) oinblem for selecting the population

associated with the largest unknown mean from k (> 2) no-.mal

populations, several types of two-stage procedures have been

studied. Among them elimination type procedures, which select a

subset of populations of interests at stage 1 and finally select the

best population at stage 2, are important. Under the non-Bayesian

formulation Alam (1970) has studied the known variances case and

Tamhane and Bechhofer (1977, 1979 ), using a minimax criterion,

also have studied the known variances case. Gupta and Kim (198)

and Tamhane ( 1975 ) have considered the common unknown variance

case. Recently Gupta and Miescke ( 1982, 1983), among others, have

studied the problem under the decision-theoretic Bayesian framework.

In this chapter, we propose an elimination type procedure under

the Bayesian setting. At stage 1 we use a noninformative prior for

unknown parameters. To select the best population at stage 2, we

use a stopping rule to construct a lO0(l-2a)% Highest Posterior

Density (HPD) credible region with a common width 2d.

:-z-
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In Section 4.2 we give notations and definitions including the

definition of the l00(1-2a)% HPD credible region.

p In Section 4.3 we propose a procedure R(a,d) which selects the

best after retaining a subset of populations at stage 1 and

investigate its properties.

4.2. Framework

Let rlP...9k be I ndependent normal populations with

unknown means 6lV... ,k , respectively and unknown common variance
etQ2 2

2 < Also let a random variable Xi be the observable

characteristic associated with ri• For i = 1,2,..., k, let

(X ,.. (. ) be a vector of n independent observations from
i Xil ... 'Xin

r i 1,2,..., k, respectively. Assuming that very little is

known to the experimenter about the prior distribution of (ell 2 .....

ek, a2) we may use a locally uniform joint prior density

T(e1,e2,...ec
2 ) = o-20)(o2), which is also a noninformative

prior for the model, where IA(x) is the usual indicator function.

Let Y(ell ... ,eX 1. ... X) be the marginal joint posterior

distribution of e' = (ell...ek) given X' (XI ... Xk) •

-i  is said to be 'good' ('bad') if i , e0 (ei <  E0),

where en is a control or standard which is specified a priori by

the experimenter. Let 6(0) (X) = (6 I)(Xl),...,6l)(Xk)), where

)(xi) is a nonrandomized decision rule for ri at stage 1, i.e.,

(xi) 1 if ri is accepted as a good population and

6, )(xi) =0 if ri is rejected as a bad one. Let the loss function

. . .. . . . . . . .
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L(1 )(e, 60)(X)) at stage 1 be as follow:

(4.2.1) L 1 (e,6(1)(X)) = k L: (ei96 (X

where L. )(eis 61) (Xi)) is loss due to the decision 6)(xi
) about

T such that

k0  if 6 1 )(xi) = 1 and ei < e

(4.2.2) L l(ei (Xi))= kI  if 60
1 )(Xi) = 0 and e.i 60

0 otherwise,

in other words, a loss due to selecting each bad population is k

and a loss due to rejecting each good population is kl -

Remarks:

One might question the suitability of a loss of this kind in

this problem. However, a loss function of this kind can be proper

for the two-component decision problems, because the loss function

of this kind can reflect the importance of two types of possible

misclassification errors. For our situation, at stage 1, we 'only'

want to classify populations into possible good and bad populations.

Thus at stage 1 our problem can be regarded as the k two-component

decision problems. Problems of this type have been investigated by

Lehmann (1957).

Let our final nonrandomized decision 6 (2) at stage 2 be
(2))

62(Y) {j: j E S!, where Y' =(YI,..,Ys are combined samples

from stage 1 and stage 2 for populations in S where S is a selected

.- ,
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subset at stage 1 with size s. Let a loss due to the decision

6(2) (Y) be

(4.2.3) L(2)(O, 6(2()) = I{e [k],

Now we give the definition of the lO0(1-2a)% HPD credible

region which we will use at stage 2.

Let .l(eIX) be the marginal posterior density of e given X.

Definition 4.2.1 (see Berger (1980)). The 100(1-2a)% HPD credible

region for e is the subset C(1.2.) of the parameter space e of the

form

(4.2.4) C l ) {e E 8; T ( ]X e > 2

where 2a is the largest constant such that

(4.2.5) Pr(C( 1_2a) I = ) -2a.

Remark:

If I(OX) is not unimodal, then the credible region C

may consist of several disjoint intervals.

4.3. Goal and a Proposed Procedure R(a,d).

Assume that no knowledge is available concerning the correct

pairing between populations and the ordered ei s. Our goal is to

select the population associated with the largest unknown mean, if

any, from the set of good populations. The procedure R(a,d) is

designed to meet the goal.

.°
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4.3.1. Definition of the Procedure R(a,d).

Stage 1. Take n0 = max{2, [Z(la)/d] + 1) observations from

each population ri, where Z(l-) is the 10O(l-I) percentile of the

standard normal distribution and [a] is the largest integer < a.

Note that 2d corresponds to the width of the 100(1-2a)% HPD credible

region for e, which is to be specified by the experimenter.

Now based on first stage samples, we select a subset S by the

following rule.

At stage 1, for i = 1,2,...,k, 6 1l(Xi) 1 if and only if

where G () is the cdf of a Student's t distribution with v = k(no-1 )n 0o
degrees of freedom, i = Xi /n0 and"-i=l 1

n2 k 0no

V= (X - )2/kn(n0-1)
i1l j=l 13I

Now with a selected subset S with its size s,

(1) if s = 0, we decide that none of the populations are good and

stop,

(2) if s = 1, we decide that the population selected is the only

good one and hence it is the best and stop.

(3) if s > 2, we proceed to stage 2.

Stage 2. Take one observation at a time from each population

in S till N-n observations are taken such that
0

L,......................... .......... ." '.. . . . . . . . . . ..
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(4.3.1) N u inf{n: n > max(nO , [t
2V2/d 2q]+11,

where t is the lOa lower percentile of the Student's t distribution

with q - (k-s)(no-l) + s(n-l) degrees of freedom and

n+ n 2n

V= i )2 + i S - (Y ij- )2' and Y ij /n .

Then our final decision at stage 2 is

6 2 (Y) = {j: j E S and V. z max R},- 1 <1 <s

that is, to select the population associated with the largest

overall sample mean and claim it to be the best population among

good populations.

4.3.2. Properties of the Procedure R(ad).

It is easy to verify that the marginal joint posterior joint

density Tl(el,...,ektXl,...,Xk) at stage 1 follows a multivariate t

distribution with variance-covariance matrix W = V21, where I is a

kxk identity matrix. Hence the marginal posterior density of 6i

given Xl,...,xk at stage 1 follows a Student's t distribution with

k(n0-l) degrees of freedom, a location parameter Ri and a scale

parameter V. Similarly, at stage 2 the marginal posterior density

of ei of r; in S given {X i S} and Y follows a Student's t

distribution with q = (k-s)(no-1) + s(N-l) degrees of freedom, a

location parameter Vi and a scale parameter Q, where

n 0  2 N 2
R)+ ;l(Yi

(4.3.2) Q2 iS-- (Xij  ) N iES _l i  "

4- a
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Hence the following theorem holds.

Theorem 4.3.1. The stopping rule N provides the 100(1-2a)% HPD

credible region with a common width 2d for each selected population

at stage 1.

Proof. The proof is straightfoward and hence omitted.

Remark:

Since the loss L(1)(6,6( 1 )(X)) at stage 1 is linear and

additative, the decision rule 6(I)(x) is Bayes. This follows from the

fact that E[LMl)(e, {101)] = koPr{e i < 601X and

E[L)(6i , {})] = kPr(e > eolX}, for i = l,...,k, respectively.

Theorem 4.3.2. Let r = o2 Z2  /d2 . Then for a fixed a2(0 < 02 <)

and the stopping rule N,

(a) N/n -l a.s. as d- 0

and

(b) lim E(Nn) = 1 (asymptotic efficiency).
d-4

Proof. From the definitions of no and N, one can get the following

inequalities;

(4.3.3) c -1 N - + +(4.

Since no  - and N as d * 0 hence S * o2  a.s.. Thus (a) and

(b) follow.
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To examine the performance of the procedure R(a,d) a Monte

Carlo study was carried out for k a 5, a - 0.025, 0.05 with 300

simulations. To generate normal random variates with common

variance 1, the random number generator RVP developed by Professor

Rubin was used. As underlying configurations of means (supposed

to be unknown to the experimenter), we chose four different

configurations with d = 0.4, namely,

(1) (-0.2,0,0,0.2,0.4) (I) e = (-0.2,-0.2,0,0.2,0.4)

(Ill) = (-0.2,-0.2,0,0,0.2) (IV) 6 = (-0.2,-0.2,-0.2,0,0.2).

The value of e0 was supposed to be 0. As a special case under the

configuration (IV), d = 0.2 was also chosen and is called configura-

tion V. Basically four statistics were simulated: (a) the expected

subset size S at stage I (E(S)), (b) the expected value of the overall

sample size N (E(N)), (c) the expected loss at stage 1 (E(Ll)) and (d)

the probability of selecting the population associated with the larg-

est mean (PSB). For the loss function, (ko,kl) = (l,l), (1,2), (2,1),

(1,5) and (5,1) were considered. The results are shown in several

figures, where each figure contains five different configurations for

a = 0.025. In each of four figures, the abscissa is the ratio

k1/k0 . Thus Figure 1 is E(S) versus k1/ko; Figure 2 is E(N);

Figure 3 is PSB; and Figure 4 is E(Ll). Figures for a = 0.05 are

similar to these figures drawn for = 0.025 and hence are omitted.

The results indicate:

(1) As kI/k 0 increases, the values of PSB increases.

" .'* .- " . ". o. .. % ' .'. .. -.- ,. ,% . % -. . . .. -. - • • ,. . .. %, -- .- ... a -... '% . .-.- a
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(2) In general, the value of E(N) increases as kl/k 0 increases.

(3) Values of kI/k 0 are irrelevant to the values of E(Ll).

(4) When the number of good populations among five populations

decreases, the value of E(S) decreases but the value of E(Ll)

increases slightly.

(5) When the value of d decreases, the value of PSB increases.

But when the overall sample size required and the value of E(S) are

taken into consideration, the rule R(a,d) does not provide vast

improvement on PSB. This is mainly due to the fact that an

elimination-type procedure cannot recover the best population at

stage 2 if it has been eliminated at stage 1.

(6) For fixed values of the ratio k1/kO, as the distance between

the largest mean and the smallest mean increases, the values of PSB

increase and the values of E(Ll) decrease (slightly).
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Figure 1. E[Sl versus the ratio k /k0

for five configurations.

Legend of Configurations

(I e=(-0.2,0,0,0.2,0.4) with d =0.4

<~(II) = (-0.2,-0.2,0,0.2,0.4) with d = 0.4
(II -02-.,,002 it .

z(IVl) e = (-0.2-2,-0.2,0.2) with d = 0.4

[7 (MV e = (-0.2,-0.2,-0.2,0,0.2) with d = 0.4
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ifor five configurations.

Legend of Configurations

(1) (-0.2,0,00.2,0.4) with d 0.4

, (II) € - (-0.2,-0.2,0,0.2,0.4) with d 0.4

- (1ll) . - (-0.2,-0.2,0,0,0.2) with d - 0.4

7 (IV) e a (-0.2,-0.2,-0.2,0,0.2) with d - 0.4

- (V e - (-0.2,-0.2,-0.2,0,0.2) with d a 0.2

%L1.06
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Figure 3. PSB versus the ratio k1 /k 0
for five configurations.

Legend of Configurations

(1) e=(-0.2,0,0,0.2,0.4) with d =0.4

K-'(I) =(-0.2,-0.2,0,0.2,0.4) with d =0.4

L_ (111) e=(-0.2,-0.2,0,0,0.2) with d - 0.4
C' (IV) e=(-0.2,-0.2,-0.2,0,0.2) with d - 0.4

S(V) e=(-0.2,-0.2,-0.2,040.2) with d = 0.2
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for five configurations.

Legend of Configurations

A UI) e=(-0.2,0,0,0.2,0.4) with d -0.4

* K (I) =(-0.2,-0.2,0,0.2,0.4) with d - 0.4

1~ (II) e =(-0.2,-0.2,0,0,0.2) with d z 0.4

C)(IV) e=(-0.2,-0.2,-0.2,0,0.2) with d - 0.4
S(V) e=(-0.2,-0.2,-0.2,0,0.2) with d - 0.2

ZZ 
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